Ceci est une ancienne révision du document !


Méthodes de calcul appliqué à la chimie

  • Acquis d'apprentissage UE :
    • Appliquer des méthodes numériques standards ou des logiciels existant pour résoudre des problèmes fondamentaux ou annexes, liés à des activités de recherche scientifique
    • Être actif dans la recherche de méthodes de résolution numérique existantes et adaptées à des problèmes auxquels les chimistes sont confrontés
  • Contenu de l'UE :
    • Équations différentielles ordinaires (résolutions numériques et applications cinétiques)
    • Équations aux dérivées partielles (différences finies, problèmes de diffusion)
    • Systèmes d’équations non linéaires (méthode de Newton-Raphson)
    • Problèmes aux valeurs propres (applications à des problèmes de relaxation et de population)
    • Approximation par moindre carrés linéaires et non-linéaires (application à la déconvolution)
    • Approximation de Tchébyshev
    • Modélisation et visualisation de molécules
    • Minimisation et problèmes conformationnels
  • Compétences préalables
    • Connaissance de base d'un langage de programmation
    • Bases des mathématiques
  • Exercices et applications : codes écrits ou à écrire principalement en Python, avec les librairies générales matplotlib, numpy et scipy, ainsi que d'autres librairies spécialisées, notamment en chimie
  • Types d'évaluations : Examen oral sur base d'un travail approfondi sur un des chapitres du cours ou un thème additionnel

Équations différentielles ordinaires

Résolutions numériques des ODE

  • principe de discrétisation, méthode d'Euler
  • Améliorations et méthodes de Runge-Kutta
  • Runge-Kutta d'ordre 4
  • Contrôle du pas d'intégration
  • Méthodes predictor-corrector
  • Méthodes d'extrapolation (Richardson, Burlish-Stoer)
  • applications :
    • équations de cinétique chimique
    • Équation logistique
    • Réactions chimiques oscillantes : Belousov-Zhabotinsky, Brusselator, Oregonator
    • Modèle proie-prédateur
    • Attracteur étrange, modèle atmosphérique de Lorenz

Équations aux dérivées partielles

Résolutions numériques des équations aux dérivées partielles

  • Domaine d'application des équations : équation de diffusion, équation d'ondes, équations de Navier-Stokes
  • Types de traitements numériques
  • Différences finies et problèmes de diffusion
  • Schémas classiques de différences finies
    • Résolutions stationnaires
    • Résolutions dépendantes du temps
  • Méthodes explicites, critère de (ou d'in)stabilités et méthodes implicites

Problèmes aux valeurs propres

Valeurs propres et vecteurs propres

applications à des problèmes de relaxation et de population, analyse de modes normaux de vibration, PCA (principal component analysis),…

Systèmes d’équations non linéaires

Méthode de Newton-Raphson

Approximation par moindre carrés linéaires et non-linéaires

application à la déconvolution

Approximations de Tchébyshev

Modélisation et visualisation de molécules

Minimisation

problèmes conformationnels


  • Bioinformatique et algorithmes spécifiques
  • Chimie
    • calculs quantiques, de minimisation, de mécanique moléculaire
    • représentations
  • Data science, statistiques (librairie Python Pandas,…)
    • Time series analysis
    • Machine learning (Scikit-learn,…)
  • Data visualization
    • boxplot, 3D, animations, graphes,…
  • Senseurs et interfaçage, Arduino, Raspberry Pi, IoT
  • Simulations
    • Agent base modelling et systèmes complexes
    • Automates cellulaires
    • Simpy,…
  • Traitement d'image
    • particle tracking,…

Ce site web utilise des cookies. En utilisant le site Web, vous acceptez le stockage de cookies sur votre ordinateur. Vous reconnaissez également que vous avez lu et compris notre politique de confidentialité. Si vous n'êtes pas d'accord, quittez le site.En savoir plus
  • teaching/methcalchim/start.1481021908.txt.gz
  • Dernière modification : 2016/12/06 11:58
  • de villersd