Table des matières

Calculation methods applied to chemistry

Synopsis (english)

Mathematical prerequisites

Programming bases and tools

The Microsoft Azure Notebooks environment can be used to execute sample codes, using a professionnal, personnal or student login/account (i.e. student login from UMONS). The following public sample notebooks are then available to test Jupyter text and coding features :

Fundamental numerical methods

Learning outcomes :
  • Systems of linear equations
    • failing of the theoretical way to solve a linear system using determinant and cofactors (np complexity)
    • triangularisation and diagonalisation principles : algorithm and complexity
    • “divide by zero” errors and pivot solutions
    • extension towards the matrix inversion
    • lower-upper LU decomposition and complexity (N³ for the decomposition step and N² for substitution step). How to solve systems with varying independant vectors
    • special matrix require special algorithms : tridiagonal matrix algorithm (Thomas algorithm)
  • Root findings
    • Bisection method (dichotomy) : simple and robust algorithm, invariant loop, slow convergence
    • iterative transformation x = f(x), convergence and divergence situations
    • secant and regula falsi methods, Convergence Criterion of the Fixed Point Method
    • Newton-Raphson method (use of derivatives), quadratic convergence, failure, tolerance and stop condition
    • Van Wijngaardeb-Dekker-Brent method (“black box” in numerical packages)
    • Roots of polynomials and Bairstow's method
  • Numerical intégration
    • Equally Spaced methods (trapezoidal, Simpson), accuracy, error dependance,…
    • Gaussian Quadratures and orthogonal polynomials (special integrals, scale transformations, error estimates,…)

Classical numerical methods

Ordinary_differential_equations (ODE)

Numerical solutions of ODE

Partial_differential_equations (PDE)

Numerical solutions of PDE

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

applications à des problèmes de relaxation et de population, analyse de modes normaux de vibration, PCA (principal component analysis),…

Non-linear systems of equations

Linear and non-linear least squares approximations

Chebyshev approximation

+ discussion of some approximations like Bhaskara I's sine approximation formula

Molecules modelisation and visualization

Minimization

Conformational problems


Additional subjects

References

Books

Jupyter notebooks

MOOCs

Miscellaneous


Synopsis (français)

(Méthodes de calcul appliqué à la chimie)

Pré-requis mathématiques

Base de la programmation

Méthodes numériques de base

Méthodes numériques usuelles

Équations différentielles ordinaires

Résolutions numériques des ODE

Équations aux dérivées partielles

Résolutions numériques des équations aux dérivées partielles

Problèmes aux valeurs propres

Valeurs propres et vecteurs propres

applications à des problèmes de relaxation et de population, analyse de modes normaux de vibration, PCA (principal component analysis),…

Systèmes d’équations non linéaires

Méthode de Newton-Raphson

Approximation par moindre carrés linéaires et non-linéaires

application à la déconvolution

Approximations de Tchébyshev

Modélisation et visualisation de molécules

Minimisation

problèmes conformationnels


Thèmes additionnels