
2026/01/23 17:59 1/3 Polynômes : comment les multiplier par un scalaire et les additionner

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Polynômes : comment les multiplier par un
scalaire et les additionner

poly07-scal-add.py

#!/usr/bin/env python
-*- coding: UTF-8 -*-
"""
écriture d'un programme pour évaluer
des polynomes
+ fonction de multiplication d'un polynôme pas un scalaire
+ fonction d'addition de deux polynômes
"""
from math import *

def polyeval(x,a):
 """
 application de l'agorithme de Horner
 cf. http://fr.wikipedia.org/wiki/M%C3%A9thode_de_Ruffini-Horner
 """
 n = len(a) - 1 # n = ordre du polynôme
 p =0.
 for i in range(n,-1,-1):
 p = p*x +a[i]
 return p

def polyscal(s,a):
 """
 polynôme multiplié par un scalaire s
 """
 b = []
 for coef in a:
 b.append(coef*s)
 return b # on retourne les coefficients multipliés par s

def polyadd(a,b):
 """
 Addition de deux polynômes de coefficients a et b
 """
 r = a[:] # on travaille sur une copie de a pour ne pas le
modifier
 t = b[:] # idem pour b
 g = [] # polynôme somme
 n1 = len(r) # ordre du premier polynôme
 n2 = len(t) # ordre du second polynôme
 if n1 > n2: # premier polynôme de plus haut degré que le second
 for i in range(n1-n2):
 t.append(0)

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:polynomes-7?codeblock=0

Last update:
2019/02/22
11:26

teaching:progappchim:polynomes-7 https://dvillers.umons.ac.be/wiki/teaching:progappchim:polynomes-7?rev=1550831214

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 17:59

 elif n1 < n2: # second polynôme de plus haut degré que le premier
 for i in range(n2-n1):
 r.append(0)
 # r et t ont à présent la même longueur
 for i in range(len(r)):
 g.append(r[i] + t[i])
 return g # on retourne les coefficients additionnés dans la liste
g

différents tests :
x = 2.
a = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
print(polyeval(x,a))

coefm = 2.75
print(polyscal(coefm,a))

varx = 0.5
varcoef = [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]
print(polyeval(varx,varcoef))

for j in range(0,11,1):
 rep = sin(polyeval(float(j) * 0.1,varcoef))
 print(rep)

u = [1, 2, 4, 8, 16]
v = [1, 3, 9, 27, 81, 243, 729]
print(u,v,polyadd(u,v))

Dans le fonction polyadd ci-dessus, l'idée est de compléter les listes par autant de zéros qu'il faut
pour que la liste la plus courte devienne aussi longue que l'autre. On travaille en fait sur des copies
des listes pour ne pas modifier les données originales, car python passe les paramètres des fonctions
par référence et pas par valeur (cf. ici ou là). Polyadd aurait pu être conçue d'une autre manière, par
exemple en additionnant les termes tant qu'on est en dessous du degré maximum du polynôme de
degré minimum ! et en complétant ensuite par les coefficients de degré supérieur du polynôme de
degré maximum. Comme la proposition suivante d'un étudiant !

Si on utilise les astuces de programmation les plus “pythoniques” avec notamment la librairie
itertools, la fonction polyadd peut être récrite beaucoup plus simplement :

def polyadd2(a,b):
 """ Addition de deux polynomes de coefficients a et b
 utilisation de la librairie itertools avec itertools.zip_longest
 ref :
https://stackoverflow.com/questions/44000727/iterate-over-two-lists-with-dif
ferent-lengths
 """
 return [u + v for u, v in itertools.zip_longest(a, b, fillvalue=0)]

http://www.tutorialspoint.com/python/python_functions.htm
http://www.python-course.eu/passing_arguments.php
https://dvillers.umons.ac.be/wiki/teaching:progappchim:polynomes-7-contrib1

2026/01/23 17:59 3/3 Polynômes : comment les multiplier par un scalaire et les additionner

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Il est temps de créer des graphes de fonctions polynomiales. Comment faire ? Quelles librairies
utiliser ?

Un exemple de graphe a été montré dans l'introduction du cours !

Voici un programme simple pour une fonction particulière (une sinusoïde amortie) :

simple-plot-sinus-amorti.py

#!/usr/bin/env python
-*- coding: UTF-8 -*-
"""
graphe d'une sinusoïde amortie
"""

from pylab import *

def sin_amort(t):
 s1 = sin(pi * t)
 e1 = exp(- t /8.)
 return s1 * e1

xvals = arange(0., 40., 0.1)
plot(xvals, sin_amort(xvals))
show()
le même genre de graphique, avec des symboles rouges et lignes noires
plot(xvals, sin_amort(xvals), 'ro', xvals, sin_amort(xvals), 'k')
show()

Il faut donc faire un programme similaire en introduisant la fonction nécessaire et en adaptant les
appels.

Réponse à la page suivante !

From:
https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:
https://dvillers.umons.ac.be/wiki/teaching:progappchim:polynomes-7?rev=1550831214

Last update: 2019/02/22 11:26

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:polynomes-7?codeblock=2
https://dvillers.umons.ac.be/wiki/teaching:progappchim:polynomes-8
https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/teaching:progappchim:polynomes-7?rev=1550831214

	Polynômes : comment les multiplier par un scalaire et les additionner

