Représentation 3D du pH

Cas d'un acide en fonction d'un ajout de base et d'une dilution globale : cf. cet article

pH-3D_topo-01.py
#! /usr/bin/env python
# -*- coding: utf-8 -*-
"""
Use of numpy polynomes to compute pH of weak acid and strong base
 
3D topographic surface generation in the same conditions as
the following paper :
3-D Surface Visualization of pH Titration “Topos”:
Equivalence Point Cliffs, Dilution Ramps, and Buffer Plateaus"  
Garon C. Smith, Md Mainul Hossain and Patrick MacCarthy
J. Chem. Educ., 2014, 91 (2), pp 225–231   DOI: 10.1021/ed400297t
see fig here : http://pubs.acs.org/doi/abs/10.1021/ed400297t
 
Python code under GPLv3 GNU General Public License
http://www.gnu.org/licenses/gpl-3.0.html
 
Didier Villers, UMONS
http://dvillers.umons.ac.be/blog/contact/
"""
import numpy as np
import numpy.polynomial.polynomial as poly
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import *  # Axes3D
from matplotlib import cm           # Colors
 
def pH_monoprotic_acid(log10dil,Vb): 
    # this Python function operate on numbers and cannot be applied on ndarrays due to the polynomial roots search
    dil=10**log10dil
    Ca=Ca0*dil
    Cb=Cb0*dil
    # http://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.polyroots.html#numpy.polynomial.polynomial.polyroots
    # http://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.polyval.html#numpy.polynomial.polynomial.polyval
    p=np.array([-Ka*Kw,-Kw-Ka*(Ca*Va-Cb*Vb)/(Va+Vb),Ka+(Cb*Vb)/(Va+Vb),1])
    x=poly.polyroots(p)
    return float(-np.log10(x[np.where(abs(x-27.5)<27.5)]))  # only significant [H+] is returned
 
Ka=1.75E-5 # acid constant (acetic acid)
Kw=1.E-14 # water product
Ca0=1. # acid concentration
Cb0=1. # base concentration
Va=0.1 # volume of acid
Vb=0. # volume of added base
log10dil=0
print(pH_monoprotic_acid(log10dil,Vb)) # sample call
 
fig = plt.figure()
ax = Axes3D(fig)
X,Y = np.linspace(-9.,0.,36),  np.linspace(0.,200.,21)
print(type(X), X.ndim, X.shape, X.dtype)
print(type(Y), Y.ndim, Y.shape, Y.dtype)
Xc, Yc = np.meshgrid(X, Y)
Z = Xc+Yc # just to create Z
print(type(Xc), Xc.ndim, Xc.shape, Xc.dtype)
print(type(Yc), Yc.ndim, Yc.shape, Yc.dtype)
print(type(Z), Z.ndim, Z.shape, Z.dtype)
print(range(len(X)))
for ix in range(len(X)):
    for iy in range(len(Y)):
        # print ix, iy,X[ix],Y[iy],pH_monoprotic_acid(X[ix],1E-3*Y[iy])
        Z[iy][ix] = pH_monoprotic_acid(X[ix],1E-3*Y[iy])
 
ax.plot_surface(Xc,Yc,Z, rstride=1,cstride=1,cmap=cm.jet)
ax.set_xlabel('Log of dilution')
ax.set_ylabel('Vb')
ax.set_zlabel('pH')
plt.show()

La figure obtenue avec la librairie 3D de MatPlotlib peut être manipulée (zoom, rotations). En voici une image correspondant à la figure de l'article référencé dans Journal of Chemical Education :

Prolongements, références

Ce site web utilise des cookies. En utilisant le site Web, vous acceptez le stockage de cookies sur votre ordinateur. Vous reconnaissez également que vous avez lu et compris notre politique de confidentialité. Si vous n'êtes pas d'accord, quittez le site.En savoir plus
  • teaching/progappchim/ph-3d.txt
  • Dernière modification : 2021/02/16 09:27
  • de villersd