teaching:progappchim:numpy_simple

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
teaching:progappchim:numpy_simple [2018/10/31 09:17]
villersd [Références]
teaching:progappchim:numpy_simple [2022/03/25 09:48] (Version actuelle)
villersd [Références]
Ligne 2: Ligne 2:
 NumPy est une extension du langage de programmation Python, destinée à manipuler des matrices ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux. NumPy est une extension du langage de programmation Python, destinée à manipuler des matrices ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux.
  
-Numpy permet la manipulations des vecteurs, matrices et polynômes.+Chaque élément d'un tableau numpy occupe un nombre fixe d'octets, associé à un type particulier de donnée (data-type, ou dtype). Les types les plus courants incluent les entiers, bytes, entiers courts, booléens, nombres en virgule flottante, nombres complexes,... 
 + 
 +Numpy permet la manipulations des vecteurs, matrices et polynômes. Un tableau bidimensionnel peut aussi bien représenter une matrice, comme les intensités des pixels d'une image.
  
 ===== Directive d'importation ===== ===== Directive d'importation =====
Ligne 25: Ligne 27:
 Les fonctions arange et shape sont bien pratiques pour générer des nombres en séquences et réarranger des listes de nombres. La fonction linspace est utile parce qu'elle impose exactement le nombre de valeurs crées ente un minimum et un maximum. Les fonctions arange et shape sont bien pratiques pour générer des nombres en séquences et réarranger des listes de nombres. La fonction linspace est utile parce qu'elle impose exactement le nombre de valeurs crées ente un minimum et un maximum.
  
-Vous pouvez consulter [[http://wiki.scipy.org/Numpy_Example_List|cette page]] pour consulter d'autres fonctionnalités, ou [[http://wiki.scipy.org/Numpy_Example_List_With_Doc|celle-ci]], plus documentée.+Vous pouvez consulter [[https://docs.scipy.org/doc/numpy/|cette page]] pour consulter d'autres fonctionnalités, ou [[https://scipy.github.io/old-wiki/pages/Numpy_Example_List|cette ancienne documentation]].
 </note> </note>
 <code python arrays_01.py> <code python arrays_01.py>
Ligne 203: Ligne 205:
  
 **poly1d & polynomial ordonnent les coefficients en sens inverses !!!**</note> **poly1d & polynomial ordonnent les coefficients en sens inverses !!!**</note>
-<sxh python; title : arrays_polynomes_06.py>+<code python arrays_polynomes_06.py>
 #! /usr/bin/env python #! /usr/bin/env python
 # -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
Ligne 210: Ligne 212:
 """ """
 import numpy as np import numpy as np
 +from numpy.polynomial import Polynomial as P
  
-# les coefficients du polynômes sont donnés par ordre décroissance des degrés dans poly1d +# les coefficients du polynômes sont donnés par ordre décroissance des dégrés 
-a=np.poly1d([1.,2.,3.,4.]) # = x³ + 2x² + 3x +4+a = P([4., 3., 2., 1.]) # = x³ + 2x² + 3x + 4
  
-print "polynôme : \n",a, type(a)+print("polynôme : \n", a, type(a))
 # les coefficients de a : # les coefficients de a :
-print "coefficients : ",a.coeffs+print("coefficients : ", a.coef)
 # les racines de a : # les racines de a :
-print "racines : ",a.roots+print("racines : ", a.roots())
 # l'ordre du polynôme : # l'ordre du polynôme :
-print "ordre : ",a.order+print("ordre : ", a.degree())
 # évaluations sur un vecteur # évaluations sur un vecteur
-x=np.linspace(0,2.,21) +x = np.linspace(0, 2., 21) 
-print "x = ",x +print("x = ", x) 
-print "évaluation en x : ",np.polyval(a,x)+print("évaluation en x : ", a(x))
 # dérivation # dérivation
-print "dérivée : \n",np.polyder(a)+print("dérivée : \n", a.deriv(1)) 
 +print("dérivée seconde : \n", a.deriv(2)) 
 +print("dérivée troisième : \n", a.deriv(3)) 
 +print("dérivée quatrième : \n", a.deriv(4))
 # intégration # intégration
-print "intégrale : \n",np.polyint(a)+print("intégrale : \n", a.integ(1))
 # création d'un polynôme par ses racines # création d'un polynôme par ses racines
-b=a.roots +b = a.roots() 
-c=np.poly1d(b,True+c = P.fromroots(b) 
-print "Polynômes recrées par les racines :\n", c+print("Polynômes recrées par les racines :\n", c
 +#
 # fitting polynomial # fitting polynomial
-xd=np.array([0.,1.,2.,3.,4.,5.]) +
-yd1=np.array([0.05,0.99,3.95, 9.17,15.86,24.93]) +# utilisation de poly1d (ancienne librairie) 
-pfit=np.poly1d(np.polyfit(xd,yd1,2)) +#  
-print "fit d'une parabole (polynôme d'ordre 2) sur ces x et y :" +# numpy.polyfit (poly1d) : 
-print xd +# https://docs.scipy.org/doc/numpy/reference/routines.polynomials.poly1d.html 
-print yd1 +# https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html 
-print "polynôme de fit : \n",pfit +
-</sxh>+xd = np.array([0., 1., 2., 3., 4., 5.]) 
 +yd = np.array([0.05, 0.99, 3.95, 9.17, 15.86, 24.93]) 
 +pfit = np.poly1d(np.polyfit(xd, yd, 2)) 
 +print("fit d'une parabole (polynôme d'ordre 2) sur ces x et y :") 
 +print(xd) 
 +print(yd) 
 +print("polynôme de fit : \n", pfit
 +
 +# "Unfortunately, np.polynomial.polynomial.polyfit returns the coefficients 
 +# in the opposite order of that for np.polyfit and np.polyval" 
 +# → https://stackoverflow.com/questions/18767523/fitting-data-with-numpy 
 +
 +################################################## 
 +# Ajouter les fits utilisant numpy.polynomial... # 
 +################################################## 
 +
 +# numpy.polynomial.polynomial.Polynomial.fit : 
 +# https://docs.scipy.org/doc/numpy/reference/routines.polynomials.html 
 +# https://docs.scipy.org/doc/numpy/reference/routines.polynomials.package.html 
 +# https://docs.scipy.org/doc/numpy/reference/routines.polynomials.classes.html 
 +# https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.Polynomial.fit.html 
 +
 +# numpy.polynomial.polynomial.polyfit : 
 +# https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.polyfit.html 
 +# 
 +</code>
  
 Autres fonctions : voir [[http://docs.scipy.org/doc/numpy/reference/routines.polynomials.html|ici]] Autres fonctions : voir [[http://docs.scipy.org/doc/numpy/reference/routines.polynomials.html|ici]]
Ligne 351: Ligne 383:
   * [[https://www.machinelearningplus.com/101-numpy-exercises-python/|101 NumPy Exercises for Data Analysis]]   * [[https://www.machinelearningplus.com/101-numpy-exercises-python/|101 NumPy Exercises for Data Analysis]]
   * [[https://towardsdatascience.com/numpy-python-made-efficient-f82a2d84b6f7|Numpy — Python made efficient]]   * [[https://towardsdatascience.com/numpy-python-made-efficient-f82a2d84b6f7|Numpy — Python made efficient]]
 +  * [[https://www.nature.com/articles/s41586-020-2649-2|Array programming with NumPy]] Harris, C.R., Millman, K.J., van der Walt, S.J. et al., Nature 585, 357–362 (2020) DOI: 10.1038/s41586-020-2649-2
 +  * [[https://medium.com/better-programming/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d|NumPy Illustrated: The Visual Guide to NumPy]]
 +  * [[https://pythonsimplified.com/what-is-timeit-module-in-python/|What is timeit module in Python?]] Chetan Ambi, 02/02/2022 (mesure du temps d'exécution avec la librairie timeit)
 +
 +==== Références avancées ====
 +  * [[https://towardsdatascience.com/advanced-numpy-master-stride-tricks-with-25-illustrated-exercises-923a9393ab20|Advanced NumPy: Master stride tricks with 25 illustrated exercises - Includes code, explanations and questions from StackOverflow]] Raimi Karim, Medium, 04/01/2021
 +
  
  • teaching/progappchim/numpy_simple.1540973830.txt.gz
  • Dernière modification: 2018/10/31 09:17
  • de villersd