teaching:progappchim:numpy_simple

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
teaching:progappchim:numpy_simple [2017/03/07 10:08]
villersd
teaching:progappchim:numpy_simple [2022/03/25 09:48] (Version actuelle)
villersd [Références]
Ligne 2: Ligne 2:
 NumPy est une extension du langage de programmation Python, destinée à manipuler des matrices ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux. NumPy est une extension du langage de programmation Python, destinée à manipuler des matrices ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux.
  
-Numpy permet la manipulations des vecteurs, matrices et polynômes.+Chaque élément d'un tableau numpy occupe un nombre fixe d'octets, associé à un type particulier de donnée (data-type, ou dtype). Les types les plus courants incluent les entiers, bytes, entiers courts, booléens, nombres en virgule flottante, nombres complexes,... 
 + 
 +Numpy permet la manipulations des vecteurs, matrices et polynômes. Un tableau bidimensionnel peut aussi bien représenter une matrice, comme les intensités des pixels d'une image.
  
 ===== Directive d'importation ===== ===== Directive d'importation =====
Ligne 25: Ligne 27:
 Les fonctions arange et shape sont bien pratiques pour générer des nombres en séquences et réarranger des listes de nombres. La fonction linspace est utile parce qu'elle impose exactement le nombre de valeurs crées ente un minimum et un maximum. Les fonctions arange et shape sont bien pratiques pour générer des nombres en séquences et réarranger des listes de nombres. La fonction linspace est utile parce qu'elle impose exactement le nombre de valeurs crées ente un minimum et un maximum.
  
-Vous pouvez consulter [[http://wiki.scipy.org/Numpy_Example_List|cette page]] pour consulter d'autres fonctionnalités, ou [[http://wiki.scipy.org/Numpy_Example_List_With_Doc|celle-ci]], plus documentée.+Vous pouvez consulter [[https://docs.scipy.org/doc/numpy/|cette page]] pour consulter d'autres fonctionnalités, ou [[https://scipy.github.io/old-wiki/pages/Numpy_Example_List|cette ancienne documentation]].
 </note> </note>
 <code python arrays_01.py> <code python arrays_01.py>
Ligne 172: Ligne 174:
 </code> </code>
  
 +==== Références complémentaires ====
 +  * [[http://www.pybloggers.com/2017/03/how-to-do-descriptives-statistics-in-python-using-numpy/|How to do Descriptives Statistics in Python using Numpy]]
 ===== Itérations sur les tableaux ===== ===== Itérations sur les tableaux =====
 <code python arrays_iteration_05.py> <code python arrays_iteration_05.py>
Ligne 201: Ligne 205:
  
 **poly1d & polynomial ordonnent les coefficients en sens inverses !!!**</note> **poly1d & polynomial ordonnent les coefficients en sens inverses !!!**</note>
-<sxh python; title : arrays_polynomes_06.py>+<code python arrays_polynomes_06.py>
 #! /usr/bin/env python #! /usr/bin/env python
 # -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
Ligne 208: Ligne 212:
 """ """
 import numpy as np import numpy as np
 +from numpy.polynomial import Polynomial as P
  
-# les coefficients du polynômes sont donnés par ordre décroissance des degrés dans poly1d +# les coefficients du polynômes sont donnés par ordre décroissance des dégrés 
-a=np.poly1d([1.,2.,3.,4.]) # = x³ + 2x² + 3x +4+a = P([4., 3., 2., 1.]) # = x³ + 2x² + 3x + 4
  
-print "polynôme : \n",a, type(a)+print("polynôme : \n", a, type(a))
 # les coefficients de a : # les coefficients de a :
-print "coefficients : ",a.coeffs+print("coefficients : ", a.coef)
 # les racines de a : # les racines de a :
-print "racines : ",a.roots+print("racines : ", a.roots())
 # l'ordre du polynôme : # l'ordre du polynôme :
-print "ordre : ",a.order+print("ordre : ", a.degree())
 # évaluations sur un vecteur # évaluations sur un vecteur
-x=np.linspace(0,2.,21) +x = np.linspace(0, 2., 21) 
-print "x = ",x +print("x = ", x) 
-print "évaluation en x : ",np.polyval(a,x)+print("évaluation en x : ", a(x))
 # dérivation # dérivation
-print "dérivée : \n",np.polyder(a)+print("dérivée : \n", a.deriv(1)) 
 +print("dérivée seconde : \n", a.deriv(2)) 
 +print("dérivée troisième : \n", a.deriv(3)) 
 +print("dérivée quatrième : \n", a.deriv(4))
 # intégration # intégration
-print "intégrale : \n",np.polyint(a)+print("intégrale : \n", a.integ(1))
 # création d'un polynôme par ses racines # création d'un polynôme par ses racines
-b=a.roots +b = a.roots() 
-c=np.poly1d(b,True+c = P.fromroots(b) 
-print "Polynômes recrées par les racines :\n", c+print("Polynômes recrées par les racines :\n", c
 +#
 # fitting polynomial # fitting polynomial
-xd=np.array([0.,1.,2.,3.,4.,5.]) +
-yd1=np.array([0.05,0.99,3.95, 9.17,15.86,24.93]) +# utilisation de poly1d (ancienne librairie) 
-pfit=np.poly1d(np.polyfit(xd,yd1,2)) +#  
-print "fit d'une parabole (polynôme d'ordre 2) sur ces x et y :" +# numpy.polyfit (poly1d) : 
-print xd +# https://docs.scipy.org/doc/numpy/reference/routines.polynomials.poly1d.html 
-print yd1 +# https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html 
-print "polynôme de fit : \n",pfit +
-</sxh>+xd = np.array([0., 1., 2., 3., 4., 5.]) 
 +yd = np.array([0.05, 0.99, 3.95, 9.17, 15.86, 24.93]) 
 +pfit = np.poly1d(np.polyfit(xd, yd, 2)) 
 +print("fit d'une parabole (polynôme d'ordre 2) sur ces x et y :") 
 +print(xd) 
 +print(yd) 
 +print("polynôme de fit : \n", pfit
 +
 +# "Unfortunately, np.polynomial.polynomial.polyfit returns the coefficients 
 +# in the opposite order of that for np.polyfit and np.polyval" 
 +# → https://stackoverflow.com/questions/18767523/fitting-data-with-numpy 
 +
 +################################################## 
 +# Ajouter les fits utilisant numpy.polynomial... # 
 +################################################## 
 +
 +# numpy.polynomial.polynomial.Polynomial.fit : 
 +# https://docs.scipy.org/doc/numpy/reference/routines.polynomials.html 
 +# https://docs.scipy.org/doc/numpy/reference/routines.polynomials.package.html 
 +# https://docs.scipy.org/doc/numpy/reference/routines.polynomials.classes.html 
 +# https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.Polynomial.fit.html 
 +
 +# numpy.polynomial.polynomial.polyfit : 
 +# https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.polyfit.html 
 +# 
 +</code>
  
 Autres fonctions : voir [[http://docs.scipy.org/doc/numpy/reference/routines.polynomials.html|ici]] Autres fonctions : voir [[http://docs.scipy.org/doc/numpy/reference/routines.polynomials.html|ici]]
Ligne 248: Ligne 282:
 Le module de [[http://docs.scipy.org/doc/numpy/reference/routines.fft.html|transformée de Fourier discrète]] de numpy comprend de nombreuses variantes, et les transformées peuvent aussi être effectuées via le [[http://docs.scipy.org/doc/scipy/reference/fftpack.html|module équivalent fftpack de Scipy]]. Le module de [[http://docs.scipy.org/doc/numpy/reference/routines.fft.html|transformée de Fourier discrète]] de numpy comprend de nombreuses variantes, et les transformées peuvent aussi être effectuées via le [[http://docs.scipy.org/doc/scipy/reference/fftpack.html|module équivalent fftpack de Scipy]].
  
-<sxh python; title : fonctions-FT-04.py>+<code python fonctions-FT-04.py>
 #!/usr/bin/env python #!/usr/bin/env python
 #-*- coding: utf-8 -*- #-*- coding: utf-8 -*-
Ligne 279: Ligne 313:
 x = np.arange(0.0,10.0,0.025) x = np.arange(0.0,10.0,0.025)
 y1 = f1(x) y1 = f1(x)
-z1=fft.fft(y1)   +z1 = fft.fft(y1)   
-w1 = np.abs(z1[:len(z1)/2])+w1 = np.abs(z1[:len(z1)//2])
 y2 = f2(x) y2 = f2(x)
-z2=fft.fft(y2) +z2 = fft.fft(y2) 
-w2 = np.abs(z2[:len(z2)/2])+w2 = np.abs(z2[:len(z2)//2])
 y3 = f3(x) y3 = f3(x)
-z3=fft.fft(y3) +z3 = fft.fft(y3) 
-w3 = np.abs(z3[:len(z3)/2])+w3 = np.abs(z3[:len(z3)//2])
  
 # doc subplot : http://matplotlib.org/api/pyplot_api.html?highlight=subplot#matplotlib.pyplot.subplot # doc subplot : http://matplotlib.org/api/pyplot_api.html?highlight=subplot#matplotlib.pyplot.subplot
Ligne 323: Ligne 357:
 plt.savefig('fonctions-fft.png') plt.savefig('fonctions-fft.png')
 plt.show() plt.show()
-</sxh>+</code>
  
 Figure obtenue : Figure obtenue :
Ligne 329: Ligne 363:
 {{ :teaching:progappchim:fonctions-ft-04.png |}} {{ :teaching:progappchim:fonctions-ft-04.png |}}
  
 +===== Avantages de numpy =====
 +L'utilisation de la librairie nump permet souvent d'améliorer les performances par rapport à un code numérique écrit en "pure Python". Voici un exemple :
 +
 +{{gh>https://github.com/didiervillers/python_programs/blob/master/direct_pi_multirun-timeit.py}}
  
 ===== Références ===== ===== Références =====
Ligne 341: Ligne 379:
   * [[http://scipy-lectures.github.io/intro/numpy/index.html|NumPy: creating and manipulating numerical data]], de Emmanuelle Gouillart, Didrik Pinte, Gaël Varoquaux, and Pauli Virtanen   * [[http://scipy-lectures.github.io/intro/numpy/index.html|NumPy: creating and manipulating numerical data]], de Emmanuelle Gouillart, Didrik Pinte, Gaël Varoquaux, and Pauli Virtanen
   * [[http://ipython-books.github.io/featured-01/|Getting the Best Performance out of NumPy]]   * [[http://ipython-books.github.io/featured-01/|Getting the Best Performance out of NumPy]]
 +  * [[https://medium.com/towards-data-science/two-cool-features-of-python-numpy-mutating-by-slicing-and-broadcasting-3b0b86e8b4c7|Two cool features of Python NumPy: Mutating by slicing and Broadcasting]]
 +  * [[https://www.machinelearningplus.com/numpy-tutorial-part1-array-python-examples/|Numpy Tutorial Part 1: Introduction to Arrays]]
 +  * [[https://www.machinelearningplus.com/101-numpy-exercises-python/|101 NumPy Exercises for Data Analysis]]
 +  * [[https://towardsdatascience.com/numpy-python-made-efficient-f82a2d84b6f7|Numpy — Python made efficient]]
 +  * [[https://www.nature.com/articles/s41586-020-2649-2|Array programming with NumPy]] Harris, C.R., Millman, K.J., van der Walt, S.J. et al., Nature 585, 357–362 (2020) DOI: 10.1038/s41586-020-2649-2
 +  * [[https://medium.com/better-programming/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d|NumPy Illustrated: The Visual Guide to NumPy]]
 +  * [[https://pythonsimplified.com/what-is-timeit-module-in-python/|What is timeit module in Python?]] Chetan Ambi, 02/02/2022 (mesure du temps d'exécution avec la librairie timeit)
 +
 +==== Références avancées ====
 +  * [[https://towardsdatascience.com/advanced-numpy-master-stride-tricks-with-25-illustrated-exercises-923a9393ab20|Advanced NumPy: Master stride tricks with 25 illustrated exercises - Includes code, explanations and questions from StackOverflow]] Raimi Karim, Medium, 04/01/2021
 +
  
  • teaching/progappchim/numpy_simple.1488877718.txt.gz
  • Dernière modification: 2017/03/07 10:08
  • de villersd