
2026/01/23 14:04 1/12 Les bases de NumPy

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Les bases de NumPy

NumPy est une extension du langage de programmation Python, destinée à manipuler des matrices
ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux.

Chaque élément d'un tableau numpy occupe un nombre fixe d'octets, associé à un type particulier de
donnée (data-type, ou dtype). Les types les plus courants incluent les entiers, bytes, entiers courts,
booléens, nombres en virgule flottante, nombres complexes,…

Numpy permet la manipulations des vecteurs, matrices et polynômes. Un tableau bidimensionnel
peut aussi bien représenter une matrice, comme les intensités des pixels d'une image.

Directive d'importation

standard :

import numpy as np

Tableaux numériques

On convertit facilement des listes Python en tableau numpy. Essayez ceci :

import numpy as np
a = np.array([[1,2],[3,4]])
print(a)
print(a.dtype)

Sortie :

[[1 2]
 [3 4]]
<type 'numpy.ndarray'>

Pour définir un tableau, appelez simplement la fonction .array avec une liste ou un
tuple. Des fonctions spéciales zero, ones, rand permettent d'initialiser à des valeurs
particulières (0 ou 1), ou aléatoires.

Les fonctions arange et shape sont bien pratiques pour générer des nombres en
séquences et réarranger des listes de nombres. La fonction linspace est utile parce
qu'elle impose exactement le nombre de valeurs crées ente un minimum et un
maximum.

Vous pouvez consulter cette page pour consulter d'autres fonctionnalités, ou cette
ancienne documentation.

https://docs.scipy.org/doc/numpy/
https://scipy.github.io/old-wiki/pages/Numpy_Example_List
https://scipy.github.io/old-wiki/pages/Numpy_Example_List

Last update:
2022/03/25
09:48

teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1648198114

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 14:04

arrays_01.py

#! /usr/bin/env python
-*- coding: utf-8 -*-
"""
Divers codes à essayer pour créer des tableaux "array"
"""
import numpy as np

a = np.array(((1,2),(3,4))) # on peut créer un "array" à partir d'un
tuple
afficher a, le nombre de dimensions, les dimensions, le type de
donnée
print(a, a.ndim, a.shape, a.dtype)
avec des "floats" :
b = np.array([
 [1.1, 2.2, 3.3, 4.4],
 [5.5, 6.6, 7.7, 8.8],
 [9.9, 0.2, 1.3, 2.4],
])
print(b, b.ndim, b.shape, b.dtype)
un tableau de zéros
c = np.zeros((4,2))
print(c, c.ndim, c.shape, c.dtype)
un tableau tridimensionnel de 1 "complexe"
d = np.ones((2,3,4),dtype=complex)
print(d, d.ndim, d.shape, d.dtype)
un tableau avec arange, et ensuite reshape
e1 = np.arange(1,36,1)
e = np.reshape(e1,(5,7))
print(e, e.ndim, e.shape, e.dtype)
f = np.random.rand(3,3)
print(f, f.ndim, f.shape, f.dtype)
utilisation de linspace pour imposer le nombre d'éléments générés :
g = np.linspace(0.,np.pi,11)
print(g, g.ndim, g.shape, g.dtype)

Quelques manipulations élémentaires :

arrays_02.py

#! /usr/bin/env python
-*- coding: utf-8 -*-
"""
Divers codes à essayer pour manipuler des tableaux "array"
"""
import numpy as np

a = np.array([[1,2],[3,4]])

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=3
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=4

2026/01/23 14:04 3/12 Les bases de NumPy

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

b = np.array([[1,1],[1,1]])
c = a + b # addition terme à terme
print(c, c.ndim, c.shape, c.dtype)
d =a * b # multiplication terme à terme
print(d, d.ndim, d.shape, d.dtype)
e = np.dot(a,b) # multiplication matricielle
print(e, e.ndim, e.shape, e.dtype)
f = np.sin(np.pi*0.5*a) # fonction mathématique et adaptation
automatique du type
print(f, f.ndim, f.shape, f.dtype)
g = np.transpose(a) # transposition
print(g, g.ndim, g.shape, g.dtype)
print(np.sum(a),np.min(a), np.max(a)) # somme des éléments, minimum,
maximum

Fonctions mathématiques principales :

abs, sign, sqrt
logarithmes/exponentielles : log, log10, exp
trigonométriques et inverses : sin, cos, tan, arcsin, arccos, arctan
hyperboliques et inverses : sinh, cosh, tanh, arcsinh, arccosh, arctanh
entiers inférieur, supérieur ou le plus proche : floor, ceil, rint

Autres fonctions

min et max rendent le minimum et le maximum, argmin et argmax rendent les indices de ce
éléments dans un tableau 1D (consulter la documentation pour les dimensions supérieures).
sorted : tri
clip : cliping permettant d'éliminer des valeurs inférieures à une borne minimale donnée ou
supérieures à une borne maximale
unique : élimine les “doublons”
fonctions booléennes, pour des conditions, ou pour filtrer suivant des conditions (voir la
documentation)
copy : copie d'un tableau (pour éviter les modifications lors d'utilisation directe ou par
référence)
.tolist() : convertit un tableau numpy en liste standard de python

Algèbre linéaire

simple_linear_system.py

#! /usr/bin/env python
-*- coding: utf-8 -*-
"""
Solve a system of simultaneous equation in two variables of the form
 2 * x + 7 * y = 17.

http://docs.scipy.org/doc/numpy/reference/routines.ma.html#minimum-maximum
http://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=5

Last update:
2022/03/25
09:48

teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1648198114

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 14:04

 3 * x - 5 * y = -21.

reference :
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.solve.
html
"""
#

import numpy as np
a = np.array([[2.,7.],[3.,-5.]]) # coefs matrice
b = np.array([[17.],[-21.]]) # independent coef vector
print(np.linalg.solve(a,b)) # solution

Quelques possibilités supplémentaires :

arrays_linalg_03.py

#! /usr/bin/env python
-*- coding: utf-8 -*-
"""
Divers codes à essayer pour de l'algèbre linéaire avec des tableaux
"array"
"""
import numpy as np

a = np.array([[1,2],[3,4]])
print(a, a.ndim, a.shape, a.dtype)
b = np.linalg.inv(a) # matrice inverse
print(b, b.ndim, b.shape, b.dtype)
unit = np.eye(2) # matrice unitaire
print(unit, unit.ndim, unit.shape, unit.dtype)
v = np.array([[10.], [14.]]) # vecteur colonne
x1 = np.dot(b,v) # multiplication de l'inverse de a par v
x2 = np.linalg.solve(a,v) # solution du système linéaire de
coefficients
des inconnues a et de coefficients indépendants b
les deux techniques donnent évidemment le même résultat !
print(x1, x1.ndim, x1.shape, x1.dtype)
print(x2, x2.ndim, x2.shape, x2.dtype)
valeurs propres et vecteurs propres de matrices :
d = np.array([[1,1],[-1,1]])
print(np.linalg.eig(d))

Numpy dispose aussi d'une classe particulière de “arrays” pour des matrices.

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=6

2026/01/23 14:04 5/12 Les bases de NumPy

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Autres fonctions

inner : produit scalaire (équivalent à dot sur des tableaux 1D)
cross : produit vectoriel
det : déterminant

Statistiques élémentaires

arrays_stats_elem_04.py

#! /usr/bin/env python
-*- coding: utf-8 -*-
"""
Divers codes à essayer pour des statistiques élémentaires sur des
tableaux "array"
"""
import numpy as np

a = np.array([1.,2.,3.5,5.,6.,7.,7.4,7.8,8.2,8.4,8.5,9.,10.2,12.5])
print(a, a.ndim, a.shape, a.dtype)
print("médiane = ",np.median(a))
print("moyenne = ",np.mean(a))
print("variance = ",np.var(a))
print("Écart-type = ",np.std(a))

Références complémentaires

How to do Descriptives Statistics in Python using Numpy

Itérations sur les tableaux

arrays_iteration_05.py

#! /usr/bin/env python
-*- coding: utf-8 -*-
"""
itérations sur des tableaux "array"
"""
import numpy as np

a = np.array([1.,2.,3.5,5.,6.,7.,7.4,7.8,8.2,8.4,8.5,9.,10.2,12.5])
for x in a:
 print(x)
l'itération sur un tableau multdimensionnel se fait sur un premier

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=7
http://www.pybloggers.com/2017/03/how-to-do-descriptives-statistics-in-python-using-numpy/
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=8

Last update:
2022/03/25
09:48

teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1648198114

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 14:04

niveau de sous-listes
b = np.array([
 [1.1, 2.2, 3.3, 4.4],
 [5.5, 6.6, 7.7, 8.8],
 [9.9, 0.2, 1.3, 2.4],
])
for x in b:
 print(x)
 for y in x:
 print(y,", ",)
 print

Manipulation de polynômes

Une nouvelle bibliothèque polynomial devrait remplacer l'ancien “poly1d”

poly1d & polynomial ordonnent les coefficients en sens inverses !!!

arrays_polynomes_06.py

#! /usr/bin/env python
-*- coding: utf-8 -*-
"""
Utilisation de tableaux "array" pour des polynômes
"""
import numpy as np
from numpy.polynomial import Polynomial as P

les coefficients du polynômes sont donnés par ordre décroissance des
dégrés
a = P([4., 3., 2., 1.]) # = x³ + 2x² + 3x + 4

print("polynôme : \n", a, type(a))
les coefficients de a :
print("coefficients : ", a.coef)
les racines de a :
print("racines : ", a.roots())
l'ordre du polynôme :
print("ordre : ", a.degree())
évaluations sur un vecteur
x = np.linspace(0, 2., 21)
print("x = ", x)
print("évaluation en x : ", a(x))
dérivation

http://docs.scipy.org/doc/numpy/reference/routines.polynomials.package.html
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=9

2026/01/23 14:04 7/12 Les bases de NumPy

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

print("dérivée : \n", a.deriv(1))
print("dérivée seconde : \n", a.deriv(2))
print("dérivée troisième : \n", a.deriv(3))
print("dérivée quatrième : \n", a.deriv(4))
intégration
print("intégrale : \n", a.integ(1))
création d'un polynôme par ses racines
b = a.roots()
c = P.fromroots(b)
print("Polynômes recrées par les racines :\n", c)
#
fitting polynomial
#
utilisation de poly1d (ancienne librairie)
#
numpy.polyfit (poly1d) :
#
https://docs.scipy.org/doc/numpy/reference/routines.polynomials.poly1d.
html
#
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
#
xd = np.array([0., 1., 2., 3., 4., 5.])
yd = np.array([0.05, 0.99, 3.95, 9.17, 15.86, 24.93])
pfit = np.poly1d(np.polyfit(xd, yd, 2))
print("fit d'une parabole (polynôme d'ordre 2) sur ces x et y :")
print(xd)
print(yd)
print("polynôme de fit : \n", pfit)
#
"Unfortunately, np.polynomial.polynomial.polyfit returns the
coefficients
in the opposite order of that for np.polyfit and np.polyval"
→
https://stackoverflow.com/questions/18767523/fitting-data-with-numpy
#
##
Ajouter les fits utilisant numpy.polynomial...
##
#
numpy.polynomial.polynomial.Polynomial.fit :
https://docs.scipy.org/doc/numpy/reference/routines.polynomials.html
#
https://docs.scipy.org/doc/numpy/reference/routines.polynomials.package
.html
#
https://docs.scipy.org/doc/numpy/reference/routines.polynomials.classes
.html
#
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.p
olynomial.Polynomial.fit.html

Last update:
2022/03/25
09:48

teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1648198114

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 14:04

#
numpy.polynomial.polynomial.polyfit :
#
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.p
olynomial.polyfit.html
#

Autres fonctions : voir ici

L'ordre des coefficients peut facilement être inversé par un slice avec les paramètres [::-1]

Transformées de Fourier

Le module de transformée de Fourier discrète de numpy comprend de nombreuses variantes, et les
transformées peuvent aussi être effectuées via le module équivalent fftpack de Scipy.

fonctions-FT-04.py

#!/usr/bin/env python
#-*- coding: utf-8 -*-
graphes de fonctions et des transformées de Fourier, utilisant numpy
et matplotlib pour les graphes

import numpy as np # directive d'importation standard de numpy
from numpy import fft # importation spécifique du module fft de numpy
import matplotlib.pyplot as plt
#from scipy import fftpack # directive d'importation standard du
module équivalent de scipy
#
https://docs.scipy.org/doc/scipy-0.15.1/reference/api.html#guidelines-f
or-importing-functions-from-scipy
#from pylab import * # directive d'importation alternative en mode
"pylab" --> supprimer les plt., fft.,

def f1(t):
 f = np.sin(np.pi*2.*t)
 return f

def f2(t):
 f = np.exp(-t/2.)*np.cos(np.pi*2.*t)
 return f

def f3(t):
 f =
(4./np.pi)*(np.sin(np.pi*2.*t)+np.sin(np.pi*6.*t)/3.+np.sin(np.pi*10.*t
)/5.+np.sin(np.pi*14.*t)/7.+np.sin(np.pi*18.*t)/9.)
 return f

http://docs.scipy.org/doc/numpy/reference/routines.polynomials.html
http://docs.scipy.org/doc/numpy/reference/routines.fft.html
http://docs.scipy.org/doc/scipy/reference/fftpack.html
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=10

2026/01/23 14:04 9/12 Les bases de NumPy

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

une TF peut se faire via :
fft.fft() du fait de la directive from numpy import fft
, ou np.fft.fft() du fait de import numpy as np
, ou fftpack.fft(y1) si on utilise le module de scipy
x = np.arange(0.0,10.0,0.025)
y1 = f1(x)
z1 = fft.fft(y1)
w1 = np.abs(z1[:len(z1)//2])
y2 = f2(x)
z2 = fft.fft(y2)
w2 = np.abs(z2[:len(z2)//2])
y3 = f3(x)
z3 = fft.fft(y3)
w3 = np.abs(z3[:len(z3)//2])

doc subplot :
http://matplotlib.org/api/pyplot_api.html?highlight=subplot#matplotlib.
pyplot.subplot
plt.subplot(3,2,1) # sous-graphes en 3 lignes et 2 colonnes, graphe 1
plt.title('Fonctions')
plt.plot(x,y1)
plt.xlabel("t/s")
plt.ylabel("A(t)")

plt.subplot(3,2,2) # sous-graphes en 3 lignes et 2 colonnes, graphe 2
plt.title(u'Transformées de Fourier')
plt.plot(w1)
plt.xlabel("f/Hz")
plt.ylabel("A(f)")

plt.subplot(3,2,3) # sous-graphes en 3 lignes et 2 colonnes, graphe 3
plt.plot(x,y2)
plt.xlabel("t/s")
plt.ylabel("A(t)")

plt.subplot(3,2,4) # sous-graphes en 3 lignes et 2 colonnes, graphe 4
plt.plot(w2)
plt.xlabel("f/Hz")
plt.ylabel("A(f)")

plt.subplot(3,2,5) # sous-graphes en 3 lignes et 2 colonnes, graphe 5
plt.plot(x,y3)
plt.xlabel("t/s")
plt.ylabel("A(t)")

plt.subplot(3,2,6) # sous-graphes en 3 lignes et 2 colonnes, graphe 6
plt.plot(w3)
plt.xlabel("f/Hz")
plt.ylabel("A(f)")

Last update:
2022/03/25
09:48

teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1648198114

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 14:04

plt.savefig('fonctions-fft.png')
plt.show()

Figure obtenue :

Avantages de numpy

L'utilisation de la librairie nump permet souvent d'améliorer les performances par rapport à un code
numérique écrit en “pure Python”. Voici un exemple :

direct_pi_multirun-timeit.py

-*- coding: utf-8 -*-
"""
In the introduction of his MOOC "SMAC" (Statistical Mechanics:
Algorithms and
Computations - https://www.coursera.org/learn/statistical-mechanics),
Werner
Krauth propose a simple method to compute pi using a direct sampling
Monte Carlo simulation. A program is proposed in Python, in a version
which
allows to do many runs of the function direct_pi(N). The code is
written in a
style close to pseudocode used for algorithms, or classical coding
style used
in C, Fortran,...

It is possible to write the function in a more "pythonic" way, or to
use the
numpy numerical library, to improve compactness and efficiency.

Function direct_pi_DV(N) use pure python with list comprehension to
eliminate
the for loop. The sum is directly made on the boolean comparison
results to count
the number of true trials.

Function direct_pi_DV_np(N) use the numpy library to vectorize the
loop, directly
square values and sum the array elements over the smaller axis. Again
the sum
is directly made on the boolean comparisons.

Finally, in order to compare efficiency, the execution times of the
three

https://github.com/didiervillers/python_programs/blob/master/direct_pi_multirun-timeit.py

2026/01/23 14:04 11/12 Les bases de NumPy

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

versions have been measured using the timeit library.

Here is value obtain for a sample run :
direct_pi : 3.5209695600005944 s
direct_pi_DV : 4.000994963998892 s
direct_pi_Dv_np : 0.19237353700009407 s

The use ot the numpy library clearly improve the computer speed
performance by
a factor about 20.
"""
import random, timeit
import numpy as np

def direct_pi(N):
 n_hits = 0
 for i in range(N):
 x, y = random.uniform(-1.0, 1.0), random.uniform(-1.0, 1.0)
 if x ** 2 + y ** 2 < 1.0:
 n_hits += 1
 return n_hits

def direct_pi_DV(N):
 return sum((random.uniform(-1,1)**2 + random.uniform(-1,1)**2) < 1
for i in range(N))

def direct_pi_DV_np(N):
 return np.sum((np.random.uniform(-1,1,(N,2))**2).sum(1)<1)

n_runs = 1000
n_trials = 4000

running :
for run in range(n_runs):
 print(run, 4.0 * direct_pi(n_trials) / n_trials)

for run in range(n_runs):
 print(run, 4.0 * direct_pi_DV(n_trials) / n_trials)

for run in range(n_runs):
 print(run, 4.0 * direct_pi_DV_np(n_trials) / n_trials)

timing three versions :
print(timeit.timeit('direct_pi('+str(n_trials)+')', "from __main__
import direct_pi", number=n_runs))
print(timeit.timeit('direct_pi_DV('+str(n_trials)+')', "from __main__
import direct_pi_DV", number=n_runs))
print(timeit.timeit('direct_pi_DV_np('+str(n_trials)+')', "from
__main__ import direct_pi_DV_np", number=n_runs))

Last update:
2022/03/25
09:48

teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1648198114

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 14:04

Références

Site officiel
NumPy reference
Page Wikipédia
Guide to NumPy
Tutoriel via l'exemple du jeu de la vie (+ ici)
http://wiki.scipy.org/Tentative_NumPy_Tutorial
Introduction à Numpy, Scipy et Matplotlib
NumPy: creating and manipulating numerical data, de Emmanuelle Gouillart, Didrik Pinte, Gaël
Varoquaux, and Pauli Virtanen
Getting the Best Performance out of NumPy
Two cool features of Python NumPy: Mutating by slicing and Broadcasting
Numpy Tutorial Part 1: Introduction to Arrays
101 NumPy Exercises for Data Analysis
Numpy — Python made efficient
Array programming with NumPy Harris, C.R., Millman, K.J., van der Walt, S.J. et al., Nature 585,
357–362 (2020) DOI: 10.1038/s41586-020-2649-2
NumPy Illustrated: The Visual Guide to NumPy
What is timeit module in Python? Chetan Ambi, 02/02/2022 (mesure du temps d'exécution avec
la librairie timeit)

Références avancées

Advanced NumPy: Master stride tricks with 25 illustrated exercises - Includes code, explanations
and questions from StackOverflow Raimi Karim, Medium, 04/01/2021

From:
https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:
https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1648198114

Last update: 2022/03/25 09:48

http://www.numpy.org/
http://docs.scipy.org/doc/numpy/reference/
http://fr.wikipedia.org/wiki/NumPy
http://csc.ucdavis.edu/~chaos/courses/nlp/Software/NumPyBook.pdf
http://www.loria.fr/~rougier/teaching/numpy/numpy.html
https://github.com/rougier/numpy-tutorial
http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://math.mad.free.fr/wordpress/wp-content/uploads/intronumpy.pdf
http://scipy-lectures.github.io/intro/numpy/index.html
http://ipython-books.github.io/featured-01/
https://medium.com/towards-data-science/two-cool-features-of-python-numpy-mutating-by-slicing-and-broadcasting-3b0b86e8b4c7
https://www.machinelearningplus.com/numpy-tutorial-part1-array-python-examples/
https://www.machinelearningplus.com/101-numpy-exercises-python/
https://towardsdatascience.com/numpy-python-made-efficient-f82a2d84b6f7
https://www.nature.com/articles/s41586-020-2649-2
https://medium.com/better-programming/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d
https://pythonsimplified.com/what-is-timeit-module-in-python/
https://towardsdatascience.com/advanced-numpy-master-stride-tricks-with-25-illustrated-exercises-923a9393ab20
https://towardsdatascience.com/advanced-numpy-master-stride-tricks-with-25-illustrated-exercises-923a9393ab20
https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1648198114

	Les bases de NumPy
	Directive d'importation
	Tableaux numériques
	Fonctions mathématiques principales :
	Autres fonctions

	Algèbre linéaire
	Autres fonctions

	Statistiques élémentaires
	Références complémentaires

	Itérations sur les tableaux
	Manipulation de polynômes
	Transformées de Fourier
	Avantages de numpy
	Références
	Références avancées

