2026/01/23 15:17 1/12 Les bases de NumPy

Les bases de NumPy

NumPy est une extension du langage de programmation Python, destinée a manipuler des matrices
ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux.

Chaque élément d'un tableau numpy occupe un nombre fixe d'octets, associé a un type particulier de
donnée (data-type, ou dtype). Les types les plus courants incluent les entiers, bytes, entiers courts,
booléens, nombres en virgule flottante, nombres complexes,...

Numpy permet la manipulations des vecteurs, matrices et polyndmes. Un tableau bidimensionnel
peut aussi bien représenter une matrice, comme les intensités des pixels d'une image.

Directive d'importation

e standard :

import numpy as np

Tableaux numériques

On convertit facilement des listes Python en tableau numpy. Essayez ceci :

numpy np
a = np.array

a

a.dtype

Sortie :

[[1 2]
[3 4]]
<type 'numpy.ndarray'>

Pour définir un tableau, appelez simplement la fonction .array avec une liste ou un
tuple. Des fonctions spéciales zero, ones, rand permettent d'initialiser a des valeurs
particulieres (0 ou 1), ou aléatoires.

Les fonctions arange et shape sont bien pratiques pour générer des nombres en
séquences et réarranger des listes de nombres. La fonction linspace est utile parce
qu'elle impose exactement le nombre de valeurs crées ente un minimum et un
maximum.

Vous pouvez consulter cette page pour consulter d'autres fonctionnalités, ou cette
ancienne documentation.

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

https://docs.scipy.org/doc/numpy/
https://scipy.github.io/old-wiki/pages/Numpy_Example_List
https://scipy.github.io/old-wiki/pages/Numpy_Example_List

Last update:
2022/03/08 teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1646728903
09:41

arrays 01.py

#! /usr/bin/env python
-*- coding: utf-8 -*-

Divers codes a essayer pour créer des tableaux "array"

import numpy as np

a = np.array(((1,2),(3,4))) # on peut créer un "array" a partir d'un

tuple

afficher a, le nombre de dimensions, les dimensions, le type de

donnée

print(a, a.ndim, a.shape, a.dtype)

avec des "floats"

b = np.array(|
[1.1, 2.2,
[5.5, 6.6,
[9.9, 0.2
1)

print(b, b.ndim, b.shape, b.dtype)

un tableau de zéros

C = np.zeros((4,2))

print(c, c.ndim, c.shape, c.dtype)

un tableau tridimensionnel de 1 "complexe"

d = np.ones((2,3,4), dtype=complex)

print(d, d.ndim, d.shape, d.dtype)

un tableau avec arange, et ensuite reshape

el = np.arange(1,36,1)

e = np.reshape(el, (5,7))

print(e, e.ndim, e.shape, e.dtype)

f = np.random.rand(3,3)

print(f, f.ndim, f.shape, f.dtype)

utilisation de linspace pour imposer le nombre d'éléments générés :

g = np.linspace(0.,np.pi,11)

print(g, g.ndim, g.shape, g.dtype)

3,
7,
3

’

] ’
] ’
]

’

R N W
N o0 B~
S 00 b~

’

Quelgques manipulations élémentaires :

arrays_02.py

#! J/usr/bin/env python
-*- coding: utf-8 -*-

Divers codes a essayer pour manipuler des tableaux "array"

import numpy as np

a = np.array([[1,2],[3,4]])

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 15:17

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=3
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=4

2026/01/23 15:17 3/12 Les bases de NumPy

b =np.array([[1,1],[1,1
C=a+b # addition terme a terme
c, c.ndim, c.shape, c.dtype
d=a *b # multiplication terme a terme
d, d.ndim, d.shape, d.dtype
e np.dot(a,b) # multiplication matricielle
e, e.ndim, e.shape, e.dtype
f np.sin(np.pi*0.5*a) # fonction mathématique et adaptation
automatique du type
f, f.ndim, f.shape, f.dtype
g np.transpose(a) # transposition
g, g.ndim, g.shape, g.dtype
np.sum(a),np.min(a), np.max(a # somme des éléments, minimum,
maximum

Fonctions mathématiques principales :

abs, sign, sqrt

logarithmes/exponentielles : log, 10g10, exp

trigonométriques et inverses : sin, cos, tan, arcsin, arccos, arctan
hyperboliques et inverses : sinh, cosh, tanh, arcsinh, arccosh, arctanh
entiers inférieur, supérieur ou le plus proche : floor, ceil, rint

Autres fonctions

e min et max rendent le minimum et le maximum, argmin et argmax rendent les indices de ce
éléments dans un tableau 1D (consulter la documentation pour les dimensions supérieures).

e sorted : tri

e clip : cliping permettant d'éliminer des valeurs inférieures a une borne minimale donnée ou
supérieures a une borne maximale

e unique : élimine les “doublons”

« fonctions booléennes, pour des conditions, ou pour filtrer suivant des conditions (voir la
documentation)

e copy : copie d'un tableau (pour éviter les modifications lors d'utilisation directe ou par
référence)

e .tolist() : convertit un tableau numpy en liste standard de python

Algebre linéaire

simple_linear_system.py

#! /usr/bin/env python

-*- coding: utf-8 -*-

Solve a system of simultaneous equation in two variables of the form
2 * x +7 *y=17.

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

http://docs.scipy.org/doc/numpy/reference/routines.ma.html#minimum-maximum
http://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=5

Last update:
2022/03/08 teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1646728903
09:41

3*x -5*y=-21.

reference :

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.solve.
html

#

import numpy as np

a = np.array([[2.,7.],[3.,-5.]1]) # coefs matrice

b =np.array([[17.],[-21.]1]) # independent coef vector
print(np.linalg.solve(a,b)) # solution

Quelques possibilités supplémentaires :

arrays_linalg_03.py

#! /usr/bin/env python

-*- coding: utf-8 -*-

Divers codes a essayer pour de l'algebre linéaire avec des tableaux
"array"

1mport numpy as np

a = np.array([[1,2],[3,4]])

print(a, a.ndim, a.shape, a.dtype)

b = np.linalg.inv(a) # matrice inverse

print(b, b.ndim, b.shape, b.dtype)

unit = np.eye(2) # matrice unitaire

print(unit, unit.ndim, unit.shape, unit.dtype)

v = np.array([[10.], [14.]]) # vecteur colonne

x1 = np.dot(b,v) # multiplication de l'inverse de a par v
x2 = np.linalg.solve(a,v) # solution du systeme linéaire de
coefficients

des inconnues a et de coefficients indépendants b

les deux techniques donnent évidemment le méme résultat !
print(x1l, x1.ndim, x1.shape, xl.dtype)

print(x2, x2.ndim, x2.shape, x2.dtype)

valeurs propres et vecteurs propres de matrices :

d = np.array([[1,1],[-1,1]1])

print(np.linalg.eig(d))

Numpy dispose aussi d'une classe particuliere de “arrays” pour des matrices.

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 15:17

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=6

2026/01/23 15:17 5/12 Les bases de NumPy

Autres fonctions

e inner : produit scalaire (équivalent a dot sur des tableaux 1D)
e Cross : produit vectoriel
e det : déterminant

Statistiques élémentaires

arrays_stats elem_04.py

#! J/usr/bin/env python
-*- coding: utf-8 -*-

Divers codes a essayer pour des statistiques élémentaires sur des
tableaux "array"

numpy np

a np.array([(1.,2.,3.5,5.,6.,7.,7.4,7.8,8.2,8.4,8.5,9.,10.2,12.5
a, a.ndim, a.shape, a.dtype

"médiane = ",np.median(a
"moyenne = ", np.mean(a
“variance = ",np.var(a
"Ecart-type = ",np.std(a

Références complémentaires

e How to do Descriptives Statistics in Python using Numpy

Itérations sur les tableaux

arrays_iteration_05.py

#! /usr/bin/env python
-*- coding: utf-8 -*-

itérations sur des tableaux "array"

numpy np

a np.array([1.,2.,3.5,5.,6.,7.,7.4,7.8,8.2,8.4,8.5,9.,10.2,12.5
X a:

X
1'itération sur un tableau multdimensionnel se fait sur un premier

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=7
http://www.pybloggers.com/2017/03/how-to-do-descriptives-statistics-in-python-using-numpy/
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=8

Last update:
2022/03/08 teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1646728903
09:41

niveau de sous-listes
b = np.array

1.1, 2.2, 3.3, 4.4
5.5, 6.6, 7.7, 8.8
9.9, 0.2, 1.3, 2.4
X b:
X
y X:
v,

Manipulation de polynomes

Une nouvelle bibliotheque polynomial devrait remplacer I'ancien “polyld”

polyld & polynomial ordonnent les coefficients en sens inverses !!!

arrays_polynomes_06.py

#! /usr/bin/env python
-*- coding: utf-8 -*-

Utilisation de tableaux "array" pour des polynomes

numpy np
numpy.polynomial Polynomial P

les coefficients du polynbébmes sont donnés par ordre décroissance des
dégrés
a P([4., 3., 2., 1. # =x3 + 2x%2 + 3x + 4

"polynéme : \n", a, typela
les coefficients de a :
"coefficients : ", a.coef
les racines de a :
"racines ", a.roots
l'ordre du polynéme :
"ordre ", a.degree
évaluations sur un vecteur
X = np.linspace(0, 2., 21
"x =", X
"évaluation en x : ", al(x
dérivation

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 15:17

http://docs.scipy.org/doc/numpy/reference/routines.polynomials.package.html
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=9

2026/01/23 15:17 7/12 Les bases de NumPy

print("dérivée : \n", a.deriv(1))
print("dérivée seconde : \n", a.deriv(2))
print("dérivée troisieme : \n", a.deriv(3))
print("dérivée quatrieme : \n", a.deriv(4))
intégration

print("intégrale : \n", a.integ(1))

création d'un polynbme par ses racines

b = a.roots()

c = P.fromroots(b)

print("Polynémes recrées par les racines :\n", c)

#

fitting polynomial

#

utilisation de polyld (ancienne librairie)

#

numpy.polyfit (polyld)

#
https://docs.scipy.org/doc/numpy/reference/routines.polynomials.polyld.
html

#
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
#

xd = np.array([0., 1., 2., 3., 4., 5.1)
yd = np.array([0.05, 0.99, 3.95, 9.17, 15.86, 24.93])

pfit = np.polyld(np.polyfit(xd, yd, 2))

print("fit d'une parabole (polyndome d'ordre 2) sur ces x et y :")
print(xd)

print(yd)

print("polynéme de fit : \n", pfit)

#

"Unfortunately, np.polynomial.polynomial.polyfit returns the
coefficients

1in the opposite order of that for np.polyfit and np.polyval"

-
https://stackoverflow.com/questions/18767523/fitting-data-with-numpy
#

HRRHH AR R HHH AR R HAAA R AR

Ajouter les fits utilisant numpy.polynomial...

HHAABH A AR R R A B R B AH R R AR R R AR BB AR BB AR B R AR B R AR FR A A F R R

#

numpy.polynomial.polynomial.Polynomial.fit :

https://docs.scipy.org/doc/numpy/reference/routines.polynomials.html
#
https://docs.scipy.org/doc/numpy/reference/routines.polynomials.package
.html

#
https://docs.scipy.org/doc/numpy/reference/routines.polynomials.classes
.html

#
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.p
olynomial.Polynomial. fit.html

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Last update:
2022/03/08 teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1646728903
09:41

#

numpy.polynomial.polynomial.polyfit :

#
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.p
olynomial.polyfit.html

#

Autres fonctions : voir ici

L'ordre des coefficients peut facilement étre inversé par un slice avec les parametres [::-1]

Transformées de Fourier

Le module de transformée de Fourier discrete de numpy comprend de nombreuses variantes, et les
transformées peuvent aussi étre effectuées via le module équivalent fftpack de Scipy.

fonctions-FT-04.py

#!/usr/bin/env python

#-*- coding: utf-8 -*-

graphes de fonctions et des transformées de Fourier, utilisant numpy
et matplotlib pour les graphes

import numpy as np # directive d'importation standard de numpy

from numpy import fft # importation spécifique du module fft de numpy
import matplotlib.pyplot as plt

#from scipy import fftpack # directive d'importation standard du
module équivalent de scipy

#
https://docs.scipy.org/doc/scipy-0.15.1/reference/api.html#quidelines-f
or-importing- functions-from-scipy

#from pylab import * # directive d'importation alternative en mode
"pylab" --> supprimer les plt., fft.,

def fl(t):
f = np.sin(np.pi*2.*t)
return f

def f2(t):
f = np.exp(-t/2.)*np.cos(np.pi*2.*t)
return f

def f3(t):

f =
(4./np.pi)*(np.sin(np.pi*2.*t)+np.sin(np.pi*6.*t)/3.+np.sin(np.pi*10.*t
)/5.+np.sin(np.pi*14.*t)/7.+np.sin(np.pi*18.*t)/9.)

return f

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 15:17

http://docs.scipy.org/doc/numpy/reference/routines.polynomials.html
http://docs.scipy.org/doc/numpy/reference/routines.fft.html
http://docs.scipy.org/doc/scipy/reference/fftpack.html
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=10

2026/01/23 15:17

9/12

Les bases de NumPy

une TF peut se faire
fft.fft() du fait de
, ou np.fft.fft() du
, ou fftpack.fft(yl)

via :

X = np.arange(0.0,10.0,0.025)

fl(x)

= fft.fft(yl)
= np.abs(zl/:len(zl)//2])
= f2(x)

= fft.fft(y2)
= np.abs(z2[:len(z2)//2])
= f3(x)

= fft.fft(y3)
np.abs(z3[:len(z3)//21)

doc subplot :
http://matplotlib.org/api/pyplot api.html?highlight=subplot#matplotlib.
pyplot.subplot
plt.
plt.
plt.
.xlabel("t/s")

plt

plt.

plt.
plt.
plt.
.xlabel("f/Hz")

plt

plt.

plt.
plt.
.xXlabel("t/s")

plt

plt.

plt.
plt.
plt.
plt.

plt.
plt.
.xXlabel("t/s")

plt

plt.

plt.
plt.
plt.
plt.

subplot(3,2,1)
plot(x,yl)
ylabel ("A(t)")

subplot(3,2,2)

la directive from numpy import fft
fait de import numpy as np
si on utilise le module de scipy

sous-graphes en 3 lignes et 2 colonnes,
title('Fonctions')

sous-graphes

en

title(u'Transformées de Fourier')

plot(wl)
ylabel ("A(f)")

subplot(3,2,3)
plot(x,y2)

ylabel ("A(t)")

subplot(3,2,4)
plot(w2)

xlabel("f/Hz")
ylabel ("A(f)")

subplot(3,2,5)
plot(x,y3)

ylabel ("A(t)")

subplot(3,2,6)
plot(w3)

xlabel("f/Hz")
ylabel ("A(f)")

sous-graphes

sous-graphes

sous-graphes

sous-graphes

en

en

en

en

lignes

lignes

lignes

lignes

lignes

et 2

et 2

et 2

et 2

et 2

colonnes,

colonnes,

colonnes,

colonnes,

colonnes,

graphe 1

graphe 2

graphe 3

graphe 4

graphe 5

graphe 6

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Last update:
2022/03/08 teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1646728903
09:41

plt.savefig('fonctions-fft.png'
plt.show

Figure obtenue :

Avantages de numpy

L'utilisation de la librairie nump permet souvent d'améliorer les performances par rapport a un code
numérique écrit en “pure Python”. Voici un exemple :

direct_pi_multirun-timeit.py

-*- coding: utf-8 -*-

In the introduction of his MOOC "SMAC" (Statistical Mechanics:
Algorithms and

Computations - https://www.coursera.org/learn/statistical-mechanics),
Werner

Krauth propose a simple method to compute pi using a direct sampling
Monte Carlo simulation. A program is proposed in Python, in a version
which

allows to do many runs of the function direct pi(N). The code is
written in a

style close to pseudocode used for algorithms, or classical coding
style used

in C, Fortran,...

It is possible to write the function in a more "pythonic" way, or to
use the
numpy numerical library, to improve compactness and efficiency.

Function direct pi DV(N) use pure python with list comprehension to
eliminate

the for loop. The sum is directly made on the boolean comparison
results to count

the number of true trials.

Function direct pi DV np(N) use the numpy library to vectorize the
loop, directly

square values and sum the array elements over the smaller axis. Again
the sum

is directly made on the boolean comparisons.

Finally, in order to compare efficiency, the execution times of the
three

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 15:17

https://github.com/didiervillers/python_programs/blob/master/direct_pi_multirun-timeit.py

2026/01/23 15:17 11/12 Les bases de NumPy

versions have been measured using the timeit library.

Here is value obtain for a sample run
direct pi : 3.5209695600005944 s
direct pi DV : 4.000994963998892 s
direct pi Dv np : 0.19237353700009407 s

The use ot the numpy library clearly improve the computer speed
performance by
a factor about 20.

random, timeit
numpy np

direct pi(N):
n hits 0
i range(N):
X,y random.uniform(-1.0, 1.0 random.uniform(-1.0, 1.0
X ¥* 2 4+ y *x 2 1.0:
n_hits += 1
n hits

direct pi DVI(N):
sum((random.uniform(-1,1)**2 + random.uniform(-1,1)%*%*2 1
i range (N

direct pi DV np(N
np.sum((np.random.uniform(-1,1, (N,2))**2) . sum(1)<1

n_runs 1000
n_trials = 4000

running :
run range(n_runs
run, 4.0 * direct pi(n trials) / n_trials
run range(n_runs
run, 4.0 * direct pi DV(n trials) / n trials
run range(n_runs

run, 4.0 * direct pi DV np(n_trials) / n_trials

timing three versions :

timeit.timeit('direct pi('+str(n_trials)+')', "from _main
import direct pi", number=n_runs

timeit.timeit('direct pi DV('+str(n_trials)+')', "from main
import direct pi DV", number=n_runs

timeit.timeit('direct pi DV np('+str(n_trials)+')', "from

~_main_ import direct pi DV np", number=n_runs

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Last update:
2022/03/08 teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1646728903

09:41

Références

Site officiel

NumPy reference

Page Wikipédia

Guide to NumPy

Tutoriel via I'exemple du jeu de la vie (+ ici)

http://wiki.scipy.org/Tentative_NumPy _Tutorial

Introduction a Numpy, Scipy et Matplotlib

NumPy: creating and manipulating numerical data, de Emmanuelle Gouillart, Didrik Pinte, Gaél
Varoquaux, and Pauli Virtanen

Getting the Best Performance out of NumPy

Two cool features of Python NumPy: Mutating by slicing and Broadcasting

Numpy Tutorial Part 1: Introduction to Arrays

101 NumPy Exercises for Data Analysis

Numpy —Python made efficient

Array programming with NumPy Harris, C.R., Millman, K.J., van der Walt, S.J. et al., Nature 585,
357-362 (2020) DOI: 10.1038/s41586-020-2649-2

NumPy lllustrated: The Visual Guide to NumPy

Références avancées

Advanced NumPy: Master stride tricks with 25 illustrated exercises - Includes code, explanations
and questions from StackOverflow Raimi Karim, Medium, 04/01/2021

From:

https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:
https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1646728903

Last update: 2022/03/08 09:41

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 15:17

http://www.numpy.org/
http://docs.scipy.org/doc/numpy/reference/
http://fr.wikipedia.org/wiki/NumPy
http://csc.ucdavis.edu/~chaos/courses/nlp/Software/NumPyBook.pdf
http://www.loria.fr/~rougier/teaching/numpy/numpy.html
https://github.com/rougier/numpy-tutorial
http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://math.mad.free.fr/wordpress/wp-content/uploads/intronumpy.pdf
http://scipy-lectures.github.io/intro/numpy/index.html
http://ipython-books.github.io/featured-01/
https://medium.com/towards-data-science/two-cool-features-of-python-numpy-mutating-by-slicing-and-broadcasting-3b0b86e8b4c7
https://www.machinelearningplus.com/numpy-tutorial-part1-array-python-examples/
https://www.machinelearningplus.com/101-numpy-exercises-python/
https://towardsdatascience.com/numpy-python-made-efficient-f82a2d84b6f7
https://www.nature.com/articles/s41586-020-2649-2
https://medium.com/better-programming/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d
https://towardsdatascience.com/advanced-numpy-master-stride-tricks-with-25-illustrated-exercises-923a9393ab20
https://towardsdatascience.com/advanced-numpy-master-stride-tricks-with-25-illustrated-exercises-923a9393ab20
https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1646728903

	Les bases de NumPy
	Directive d'importation
	Tableaux numériques
	Fonctions mathématiques principales :
	Autres fonctions

	Algèbre linéaire
	Autres fonctions

	Statistiques élémentaires
	Références complémentaires

	Itérations sur les tableaux
	Manipulation de polynômes
	Transformées de Fourier
	Avantages de numpy
	Références
	Références avancées

