2026/01/23 15:24 1/11 Les bases de NumPy

Les bases de NumPy

NumPy est une extension du langage de programmation Python, destinée a manipuler des matrices
ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux.

Numpy permet la manipulations des vecteurs, matrices et polynémes.

Directive d'importation

e standard :

import numpy as np

Tableaux numériques

On convertit facilement des listes Python en tableau numpy. Essayez ceci :

numpy np
a = np.array

a

a.dtype

Sortie :

[[1 2]
[3 4]]
<type 'numpy.ndarray's

Pour définir un tableau, appelez simplement la fonction .array avec une liste ou un
tuple. Des fonctions spéciales zero, ones, rand permettent d'initialiser a des valeurs
particulieres (0 ou 1), ou aléatoires.

Les fonctions arange et shape sont bien pratiques pour générer des nombres en
séquences et réarranger des listes de nombres. La fonction linspace est utile parce
qu'elle impose exactement le nombre de valeurs crées ente un minimum et un
maximum.

Vous pouvez consulter cette page pour consulter d'autres fonctionnalités, ou celle-ci,
plus documentée.

arrays 01.py

#! /usr/bin/env python

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

http://wiki.scipy.org/Numpy_Example_List
http://wiki.scipy.org/Numpy_Example_List_With_Doc
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=3

Last update:
2018/10/31 teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1540973830
09:17

-*- coding: utf-8 -*-

Divers codes a essayer pour créer des tableaux "array"

1mport numpy as np

a = np.array(((1,2),(3,4))) # on peut créer un "“array" a partir d'un

tuple

afficher a, le nombre de dimensions, les dimensions, le type de

donnée

print(a, a.ndim, a.shape, a.dtype)

avec des "floats"

b = np.array(|
[1.1, 2.2,
[5.5, 6.6,
[9.9, 0.2
1)

print(b, b.ndim, b.shape, b.dtype)

un tableau de zéros

C = np.zeros((4,2))

print(c, c.ndim, c.shape, c.dtype)

un tableau tridimensionnel de 1 "complexe"

d = np.ones((2,3,4), dtype=complex)

print(d, d.ndim, d.shape, d.dtype)

un tableau avec arange, et ensuite reshape

el = np.arange(1,36,1)

e = np.reshape(el, (5,7))

print(e, e.ndim, e.shape, e.dtype)

f = np.random.rand(3,3)

print(f, f.ndim, f.shape, f.dtype)

utilisation de linspace pour imposer le nombre d'éléments générés :

g = np.linspace(0.,np.pi,11)

print(g, g.ndim, g.shape, g.dtype)

3,
7,
3

’

1,
] ’
]

’

R N W
N 00 B~
S 00 P~

’

Quelques manipulations élémentaires :

arrays_02.py

#! /usr/bin/env python
-*- coding: utf-8 -*-

Divers codes a essayer pour manipuler des tableaux "array"

import numpy as np

a = np.array([[1,2],[3,4]])
b =np.array([[1,1],[1,1]])
c=a+b # addition terme a terme

print(c, c.ndim, c.shape, c.dtype)

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 15:24

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=4

2026/01/23 15:24 3/11 Les bases de NumPy

d =a *b # multiplication terme a terme

d, d.ndim, d.shape, d.dtype
e np.dot(a,b) # multiplication matricielle

e, e.ndim, e.shape, e.dtype
f np.sin(np.pi*0.5*a) # fonction mathématique et adaptation
automatique du type

f, f.ndim, f.shape, f.dtype
g np.transpose(a) # transposition

g, g.ndim, g.shape, g.dtype

np.sum(a),np.min(a np.max(a # somme des éléments, minimum,
maximum

Fonctions mathématiques principales :

abs, sign, sqrt

logarithmes/exponentielles : log, 10g10, exp

trigonométriques et inverses : sin, cos, tan, arcsin, arccos, arctan
hyperboliques et inverses : sinh, cosh, tanh, arcsinh, arccosh, arctanh
entiers inférieur, supérieur ou le plus proche : floor, ceil, rint

Autres fonctions

e min et max rendent le minimum et le maximum, argmin et argmax rendent les indices de ce
éléments dans un tableau 1D (consulter la documentation pour les dimensions supérieures).

e sorted : tri

e clip : cliping permettant d'éliminer des valeurs inférieures a une borne minimale donnée ou
supérieures a une borne maximale

e unique : élimine les “doublons”

« fonctions booléennes, pour des conditions, ou pour filtrer suivant des conditions (voir la
documentation)

e copy : copie d'un tableau (pour éviter les modifications lors d'utilisation directe ou par
référence)

e .tolist() : convertit un tableau numpy en liste standard de python

Algebre linéaire

simple_linear_system.py

#! /usr/bin/env python

-*- coding: utf-8 -*-

Solve a system of simultaneous equation in two variables of the form
2 *x+7 *xy=17.
3*x -5*y=-21,

reference

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

http://docs.scipy.org/doc/numpy/reference/routines.ma.html#minimum-maximum
http://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=5

Last update:
2018/10/31 teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1540973830
09:17

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.solve.
html

#

import numpy as np

a = np.array(|[2.,7. 3.,-5. # coefs matrice
b np.array 17. -21. # independent coef vector
print(np.linalg.solve(a,b # solution

Quelques possibilités supplémentaires :

arrays_linalg_03.py

#! /usr/bin/env python

-*- coding: utf-8 -*-

Divers codes a essayer pour de 1'algeébre linéaire avec des tableaux
"array"

import numpy a2s np

a np.array 1,2 3,4

print(a, a.ndim, a.shape, a.dtype

b = np.linalg.inv(a) # matrice inverse

print(b, b.ndim, b.shape, b.dtype

unit np.eye(2) # matrice unitaire

print(unit, unit.ndim, unit.shape, unit.dtype

Y np.array 10. 14. # vecteur colonne

x1 np.dot(b,v) # multiplication de l'inverse de a par v
x2 = np.linalg.solve(a,v) # solution du systeme linéaire de
coefficients

des inconnues a et de coefficients indépendants b

les deux techniques donnent évidemment le méme résultat !
print(xl, x1.ndim, x1.shape, x1l.dtype

print(x2, x2.ndim, x2.shape, x2.dtype

valeurs propres et vecteurs propres de matrices :

d np.array 1,1 -1,1

print(np.linalg.eig(d

Numpy dispose aussi d'une classe particuliere de “arrays” pour des matrices.

Autres fonctions

e inner : produit scalaire (équivalent a dot sur des tableaux 1D)
e Cross : produit vectoriel

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 15:24

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=6

2026/01/23 15:24 5/11 Les bases de NumPy

e det : déterminant

Statistiques élémentaires

arrays_stats_elem_04.py

#! /usr/bin/env python

-*- coding: utf-8 -*-

Divers codes a essayer pour des statistiques élémentaires sur des
tableaux "array"

numpy np

a np.array([(1.,2.,3.5,5.,6.,7.,7.4,7.8,8.2,8.4,8.5,9.,10.2,12.5
a, a.ndim, a.shape, a.dtype

"médiane = ", np.median(a
"moyenne = " np.mean(a
"variance = ", np.var(a
"Ecart-type = ",np.std(a

Références complémentaires

e How to do Descriptives Statistics in Python using Numpy

Itérations sur les tableaux

arrays_iteration_05.py

#! J/usr/bin/env python
-*- coding: utf-8 -*-

itérations sur des tableaux "array"

numpy np

a np.array([1.,2.,3.5,5.,6.,7.,7.4,7.8,8.2,8.4,8.5,9.,10.2,12.5
X a:
X
l'itération sur un tableau multdimensionnel se fait sur un premier
niveau de sous-listes
b = np.array

1.1, 2.2, 3.3, 4.4
5.5, 6.6, 7.7, 8.8
9.9, 0.2, 1.3, 2.4

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=7
http://www.pybloggers.com/2017/03/how-to-do-descriptives-statistics-in-python-using-numpy/
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=8

Last update:
2018/10/31 teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1540973830
09:17

Manipulation de polynomes

Une nouvelle bibliotheque polynomial devrait remplacer I'ancien “polyld”

polyld & polynomial ordonnent les coefficients en sens inverses !!!

<sxh python; title : arrays_polynomes_06.py> #! /usr/bin/env python # -*- coding: utf-8 -*- “"“
Utilisation de tableaux “array” pour des polynémes "“” import numpy as np

les coefficients du polynémes sont donnés par ordre décroissance des degrés dans polyld
a=np.polyld([1.,2.,3.,4.]) # = x3 + 2x2 + 3x +4

print “polyndme : \n",a, type(a) # les coefficients de a : print “coefficients : ”,a.coeffs # les racines de
a : print “racines : ”,a.roots # I'ordre du polyndéme : print “ordre : ”,a.order # évaluations sur un
vecteur x=np.linspace(0,2.,21) print “x = ",x print “évaluation en x : ”,np.polyval(a,x) # dérivation
print “dérivée : \n",np.polyder(a) # intégration print “intégrale : \n"”,np.polyint(a) # création d'un
polyndme par ses racines b=a.roots c=np.polyld(b,True) print “Polyndmes recrées par les racines
\n”, ¢ # fitting polynomial xd=np.array([0.,1.,2.,3.,4.,5.]) yd1=np.array([0.05,0.99,3.95,
9.17,15.86,24.93]) pfit=np.polyld(np.polyfit(xd,ydl,2)) print “fit d'une parabole (polyndome d'ordre 2)
sur ces x ety :” print xd print yd1 print “polyndéme de fit : \n",pfit </sxh>

Autres fonctions : voirici

L'ordre des coefficients peut facilement étre inversé par un slice avec les parameétres [::-1]

Transformées de Fourier

Le module de transformée de Fourier discrete de numpy comprend de nombreuses variantes, et les
transformées peuvent aussi étre effectuées via le module équivalent fftpack de Scipy.

fonctions-FT-04.py

#!/usr/bin/env python

#-*- coding: utf-8 -*-

graphes de fonctions et des transformées de Fourier, utilisant numpy
et matplotlib pour les graphes

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 15:24

http://docs.scipy.org/doc/numpy/reference/routines.polynomials.package.html
http://docs.scipy.org/doc/numpy/reference/routines.polynomials.html
http://docs.scipy.org/doc/numpy/reference/routines.fft.html
http://docs.scipy.org/doc/scipy/reference/fftpack.html
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:numpy_simple?codeblock=9

2026/01/23 15:24 7/11 Les bases de NumPy

import numpy as np # directive d'importation standard de numpy

from numpy import fft # importation spécifique du module fft de numpy
import matplotlib.pyplot as plt

#from scipy import fftpack # directive d'importation standard du
module équivalent de scipy

#
https://docs.scipy.org/doc/scipy-0.15.1/reference/api.html#guidelines-f
or-importing-functions-from-scipy

#from pylab import * # directive d'importation alternative en mode
"pylab" --> supprimer les plt., fft.,

def f1(t):
f = np.sin(np.pi*2.*t)
return f

def f2(t):
f = np.exp(-t/2.)*np.cos(np.pi*2.*t)
return f

def f3(t):

f =
(4./np.pi)*(np.sin(np.pi*2.*t)+np.sin(np.pi*6.*t)/3.+np.sin(np.pi*10.*t
)/5.+np.sin(np.pi*14.*t)/7.+np.sin(np.pi*18.*t)/9.)

return f

une TF peut se faire via :

fft.fft() du fait de la directive from numpy import fft
, ou np.fft.fft() du fait de import numpy as np

, ou fftpack.fft(yl) si on utilise le module de scipy
X = np.arange(0.0,10.0,0.025)

yl = fl(x)

z1 = fft.fft(yl)

wl = np.abs(z1l|:len(z1l)//2])

y2 = f2(x)

z2 = fft.fft(y2)

w2 = np.abs(z2/:len(z2)//2])

y3 = f3(x)

z3 = fft.fft(y3)

w3 = np.abs(z3[:len(z3)//2])

doc subplot :

http://matplotlib.org/api/pyplot api.html?highlight=subplot#matplotlib.
pyplot.subplot

plt.subplot(3,2,1) # sous-graphes en 3 lignes et 2 colonnes, graphe 1
plt.title('Fonctions"')

plt.plot(x,yl)

plt.xlabel("t/s")

plt.ylabel("A(t)")

plt.subplot(3,2,2) # sous-graphes en 3 lignes et 2 colonnes, graphe 2

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Last update:

2018/10/31 teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1540973830

09:17

plt.
plt.

plt

plt.

plt.
plt.

plt

plt.

plt.
plt.

plt

plt.

plt.
plt.

plt

plt.

plt.
plt.

plt

plt.

plt.
plt.

title(u'Transformées de Fourier'

plot(wl
.xlabel("f/Hz"
ylabel ("A(f)"
subplot(3,2,3
plot(x,y2
.xlabel("t/s"
ylabel ("A(t)"
subplot(3,2,4
plot (w2
.xlabel("f/Hz"
ylabel ("A(f)"
subplot(3,2,5
plot(x,y3
.xlabel("t/s"
ylabel ("A(t)"
subplot(3,2,6
plot(w3
.xlabel("f/Hz"

ylabel ("A(f)"

sous-graphes

sous-graphes

sous-graphes

sous-graphes

savefig('fonctions-fft.png'

show

Figure obtenue :

Avantages de numpy

en 3 lignes

en 3 lignes

en 3 lignes

en 3 lignes

et 2

et 2

et 2

et 2

colonnes, graphe 3

colonnes, graphe 4

colonnes, graphe 5

colonnes, graphe 6

L'utilisation de la librairie nump permet souvent d'améliorer les performances par rapport a un code

numérique écrit en “pure Python”. Voici un exemple :

direct_pi_multirun-timeit.py

-*- coding: utf-8 -*-

In the introduction of his MOOC

Algorithms and
Computations - https://www.coursera.org/learn/statistical-mechanics),
Werner
Krauth propose a simple method to compute pi using a direct sampling
Monte Carlo simulation. A program is proposed in Python, in a version

“SMAC"

(Statistical Mechanics:

https://dvillers.umons.ac.be/wiki/

Printed on 2026/01/23 15:24

https://github.com/didiervillers/python_programs/blob/master/direct_pi_multirun-timeit.py

2026/01/23 15:24 9/11 Les bases de NumPy

which

allows to do many runs of the function direct pi(N). The code is
written in a

style close to pseudocode used for algorithms, or classical coding
style used

in C, Fortran,...

It is possible to write the function in a more "pythonic" way, or to
use the
numpy numerical library, to improve compactness and efficiency.

Function direct pi DV(N) use pure python with list comprehension to
eliminate

the for loop. The sum is directly made on the boolean comparison
results to count

the number of true trials.

Function direct pi DV np(N) use the numpy library to vectorize the
loop, directly

square values and sum the array elements over the smaller axis. Again
the sum

is directly made on the boolean comparisons.

Finally, in order to compare efficiency, the execution times of the
three
versions have been measured using the timeit library.

Here is value obtain for a sample run :
direct pi : 3.5209695600005944 s
direct pi DV : 4.000994963998892 s

direct pi Dv np : 0.19237353700009407 s

The use ot the numpy library clearly improve the computer speed
performance by

a factor about 20.

import random, timeit

import numpy a2s np

def direct pi(N):
n_hits = 0
for 1 in range(N):
X,y random.uniform(-1.0, 1.0 random.uniform(-1.0, 1.0
if x ¥ 2 + y **x 2 1.0:
n_hits += 1
return n_hits

det direct pi DVI(N):
return sum((random.uniform(-1,1)**2 + random.uniform(-1,1)%*%*2 1
for i in range(N

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Last update:
2018/10/31 teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1540973830
09:17

direct pi DV np(N

np.sum((np.random.uniform/ - N **2) . sum
n_runs
n_trials
running :
run range(n_runs
run * direct pi(n trials) / n trials
run range(n runs
run * direct pi DV(n trials) / n_trials
run range(n_runs
run * direct pi DV np(n trials) / n trials

timing three versions :

timeit.timeit('direct pi('+str(n_trials)+')', "from main
import direct pi", number=n_runs

timeit.timeit('direct pi DV('+str(n_trials)+')', "from main
import direct pi DV", number=n_runs

timeit.timeit('direct pi DV np('+str(n_trials)+')', "“from

~_main__ import direct pi DV np", number=n_runs

Références

* Site officie

e NumPy reference

» Page Wikipédia

e Guide to NumPy

e Tutoriel via I'exemple du jeu de la vie (+ ici)

e http://wiki.scipy.org/Tentative_NumPy Tutorial

e Introduction a Numpy, Scipy et Matplotlib

e NumPy: creating and manipulating numerical data, de Emmanuelle Gouillart, Didrik Pinte, Gaél
Varoquaux, and Pauli Virtanen

» Getting the Best Performance out of NumPy

Two cool features of Python NumPy: Mutating by slicing and Broadcasting

Numpy Tutorial Part 1: Introduction to Arrays

101 NumPy Exercises for Data Analysis

Numpy—Python made efficient

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 15:24

http://www.numpy.org/
http://docs.scipy.org/doc/numpy/reference/
http://fr.wikipedia.org/wiki/NumPy
http://csc.ucdavis.edu/~chaos/courses/nlp/Software/NumPyBook.pdf
http://www.loria.fr/~rougier/teaching/numpy/numpy.html
https://github.com/rougier/numpy-tutorial
http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://math.mad.free.fr/wordpress/wp-content/uploads/intronumpy.pdf
http://scipy-lectures.github.io/intro/numpy/index.html
http://ipython-books.github.io/featured-01/
https://medium.com/towards-data-science/two-cool-features-of-python-numpy-mutating-by-slicing-and-broadcasting-3b0b86e8b4c7
https://www.machinelearningplus.com/numpy-tutorial-part1-array-python-examples/
https://www.machinelearningplus.com/101-numpy-exercises-python/
https://towardsdatascience.com/numpy-python-made-efficient-f82a2d84b6f7

2026/01/23 15:24 11/11 Les bases de NumPy

From:
https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:
https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?re
v=1540973830

Last update: 2018/10/31 09:17

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1540973830
https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1540973830

	Les bases de NumPy
	Directive d'importation
	Tableaux numériques
	Fonctions mathématiques principales :
	Autres fonctions

	Algèbre linéaire
	Autres fonctions

	Statistiques élémentaires
	Références complémentaires

	Itérations sur les tableaux
	Manipulation de polynômes
	Transformées de Fourier
	Avantages de numpy
	Références

