
2026/01/23 15:26 1/6 Les bases de NumPy

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Les bases de NumPy

NumPy est une extension du langage de programmation Python, destinée à manipuler des matrices
ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux.

Numpy permet la manipulations des vecteurs, matrices et polynômes.

Directive d'importation

standard :

import numpy as np

Tableaux numériques

On convertit facilement des listes Python en tableau numpy. Essayez ceci : <sxh python;> import
numpy as np a=np.array(1,2],[3,4) print a print a.dtype </sxh> Sortie :

[[1 2]
 [3 4]]
<type 'numpy.ndarray'>

Pour définir un tableau, appelez simplement la fonction .array avec une liste ou un
tuple. Des fonctions spéciales zero, ones, rand permettent d'initialiser à des valeurs
particulières (0 ou 1), ou aléatoires.

Les fonctions arange et shape sont bien pratiques pour générer des nombres en
séquences et réarranger des listes de nombres. La fonction linspace est utile parce
qu'elle impose exactement le nombre de valeurs crées ente un minimum et un
maximum.

Vous pouvez consulter cette page pour consulter d'autres fonctionnalités, ou celle-ci,
plus documentée.

<sxh python; title : arrays_01.py> #! /usr/bin/env python # -*- coding: utf-8 -*- “”“ Divers codes à
essayer pour créer des tableaux “array” ”“” import numpy as np

a=np.array1)) # on peut créer un “array” à partir d'un tuple # afficher a, le nombre de dimensions, les
dimensions, le type de donnée print a, a.ndim, a.shape, a.dtype # avec des “floats” : b= np.array(

 [[1.1, 2.2, 3.3, 4.4],
 [5.5, 6.6, 7.7, 8.8],

https://dvillers.umons.ac.be/wiki/teaching:progappchim:1_2_3_4
http://wiki.scipy.org/Numpy_Example_List
http://wiki.scipy.org/Numpy_Example_List_With_Doc

Last update:
2015/03/23
14:04

teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1427115885

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 15:26

 [9.9, 0.2, 1.3, 2.4]])

print b, b.ndim, b.shape, b.dtype # un tableau de zéros c=np.zeros2) print c, c.ndim, c.shape, c.dtype
un tableau tridimensionnel de 1 “complexe” d=np.ones3) print e, e.ndim, e.shape, e.dtype
f=np.random.rand(3,3) print f, f.ndim, f.shape, f.dtype # utilisation de linspace pour imposer le
nombre d'éléments générés : g=np.linspace(0.,np.pi,11) print g, g.ndim, g.shape, g.dtype </sxh>

Quelques manipulations élémentaires : <sxh python; title : arrays_02.py> #! /usr/bin/env python # -
- coding: utf-8 -- “”“ Divers codes à essayer pour manipuler des tableaux “array” ”“” import numpy
as np

a=np.array(1,2],[3,4) b=np.array(1,1],[1,1) c=a+b # addition terme à terme print c, c.ndim, c.shape,
c.dtype d=a*b # multiplication terme à terme print d, d.ndim, d.shape, d.dtype e=np.dot(a,b) #
multiplication matricielle print e, e.ndim, e.shape, e.dtype f=np.sin(np.pi*0.5*a) # fonction
mathématique et adaptation automatique du type print f, f.ndim, f.shape, f.dtype g=np.transpose(a)
transposition print g, g.ndim, g.shape, g.dtype print np.sum(a),np.min(a), np.max(a) # somme des
éléments, minimum, maximum </sxh>

Fonctions mathématiques principales :

abs, sign, sqrt
logarithmes/exponentielles : log, log10, exp
trigonométriques et inverses : sin, cos, tan, arcsin, arccos, arctan
hyperboliques et inverses : sinh, cosh, tanh, arcsinh, arccosh, arctanh
entiers inférieur, supérieur ou le plus proche : floor, ceil, rint

Autres fonctions

min et max rendent le minimum et le maximum, argmin et argmax rendent les indices de ce
éléments dans un tableau 1D (consulter la documentation pour les dimensions supérieures).
sorted : tri
clip : cliping permettant d'éliminer des valeurs inférieures à une borne minimale donnée ou
supérieures à une borne maximale
unique : élimine les “doublons”
fonctions booléennes, pour des conditions, ou pour filtrer suivant des conditions (voir la
documentation)
copy : copie d'un tableau (pour éviter les modifications lors d'utilisation directe ou par
référence)

Algèbre linéaire

<sxh python; title : simple_linear_system.py> #! /usr/bin/env python # -*- coding: utf-8 -*- “”“ Solve a
system of simultaneous equation in two variables of the form

 2*x + 7*y=17.
 3*x - 5*y=-21.

https://dvillers.umons.ac.be/wiki/teaching:progappchim:1_2_3_4
https://dvillers.umons.ac.be/wiki/teaching:progappchim:1_1_1_1
http://docs.scipy.org/doc/numpy/reference/routines.ma.html#minimum-maximum
http://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html

2026/01/23 15:26 3/6 Les bases de NumPy

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

reference : http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.solve.html ”“” #

import numpy as np a = np.array(2.,7.],[3.,-5.) # coefs matrice b = np.array(17.],[-21.) #
independent coef vector print np.linalg.solve(a,b) # solution </sxh>

Quelques possibilités supplémentaires : <sxh python; title : arrays_linalg_03.py> #! /usr/bin/env
python # -*- coding: utf-8 -*- “”“ Divers codes à essayer pour de l'algèbre linéaire avec des tableaux
“array” ”“” import numpy as np

a=np.array(1,2],[3,4) print a, a.ndim, a.shape, a.dtype b=np.linalg.inv(a) # matrice inverse print b,
b.ndim, b.shape, b.dtype unit = np.eye(2) # matrice unitaire print unit, unit.ndim, unit.shape,
unit.dtype v = np.array(10.], [14.) # vecteur colonne x1=np.dot(b,v) # multiplication de l'inverse de a
par v x2=np.linalg.solve(a,v) # solution du système linéaire de coefficients # des inconnues a et de
coefficients indépendants b # les deux techniques donnent évidemment le même résultat ! print x1,
x1.ndim, x1.shape, x1.dtype print x2, x2.ndim, x2.shape, x2.dtype # valeurs propres et vecteurs
propres de matrices : d=np.array(1,1],[-1,1) print np.linalg.eig(d) </sxh>

Numpy dispose aussi d'une classe particulière de “arrays” pour des matrices.

Autres fonctions

inner : produit scalaire (équivalent à dot sur des tableaux 1D)
cross : produit vectoriel
det : déterminant

Statistiques élémentaires

<sxh python; title : arrays_stats_elem_04.py> #! /usr/bin/env python # -*- coding: utf-8 -*- “”“ Divers
codes à essayer pour des statistiques élémentaires sur des tableaux “array” ”“” import numpy as np

a=np.array([1.,2.,3.5,5.,6.,7.,7.4,7.8,8.2,8.4,8.5,9.,10.2,12.5]) print a, a.ndim, a.shape, a.dtype print
“médiane = ”,np.median(a) print “moyenne = ”,np.mean(a) print “variance = ”,np.var(a) print “Écart-
type = ”,np.std(a) </sxh>

Itérations sur les tableaux

<sxh python; title : arrays_iteration_05.py> #! /usr/bin/env python # -*- coding: utf-8 -*- “”“ itérations
sur des tableaux “array” ”“” import numpy as np

a=np.array([1.,2.,3.5,5.,6.,7.,7.4,7.8,8.2,8.4,8.5,9.,10.2,12.5]) for x in a:

 print x

l'itération sur un tableau multdimensionnel se fait sur un premier niveau de sous-listes b= np.array(

 [[1.1, 2.2, 3.3, 4.4],
 [5.5, 6.6, 7.7, 8.8],

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.solve.html
https://dvillers.umons.ac.be/wiki/teaching:progappchim:2._7._3._-5
https://dvillers.umons.ac.be/wiki/teaching:progappchim:17._-21
https://dvillers.umons.ac.be/wiki/teaching:progappchim:1_2_3_4
https://dvillers.umons.ac.be/wiki/teaching:progappchim:10._14
https://dvillers.umons.ac.be/wiki/teaching:progappchim:1_1_-1_1

Last update:
2015/03/23
14:04

teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1427115885

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 15:26

 [9.9, 0.2, 1.3, 2.4]])

for x in b:

 print x
 for y in x:
 print y,", ",
 print

</sxh>

Manipulation de polynômes

Une nouvelle bibliothèque polynomial devrait remplacer l'ancien “poly1d”

poly1d & polynomial ordonnent les coefficients en sens inverses !!!

<sxh python; title : arrays_polynomes_06.py> #! /usr/bin/env python # -*- coding: utf-8 -*- “”“
Utilisation de tableaux “array” pour des polynômes ”“” import numpy as np

les coefficients du polynômes sont donnés par ordre décroissance des degrés dans poly1d
a=np.poly1d([1.,2.,3.,4.]) # = x³ + 2x² + 3x +4

print “polynôme : \n”,a, type(a) # les coefficients de a : print “coefficients : ”,a.coeffs # les racines de
a : print “racines : ”,a.roots # l'ordre du polynôme : print “ordre : ”,a.order # évaluations sur un
vecteur x=np.linspace(0,2.,21) print “x = ”,x print “évaluation en x : ”,np.polyval(a,x) # dérivation
print “dérivée : \n”,np.polyder(a) # intégration print “intégrale : \n”,np.polyint(a) # création d'un
polynôme par ses racines b=a.roots c=np.poly1d(b,True) print “Polynômes recrées par les racines
:\n”, c # fitting polynomial xd=np.array([0.,1.,2.,3.,4.,5.]) yd1=np.array([0.05,0.99,3.95,
9.17,15.86,24.93]) pfit=np.poly1d(np.polyfit(xd,yd1,2)) print “fit d'une parabole (polynôme d'ordre 2)
sur ces x et y :” print xd print yd1 print “polynôme de fit : \n”,pfit </sxh>

Autres fonctions : voir ici

L'ordre des coefficients peut facilement être inversé par un slice avec les paramètres [::-1]

Transformées de Fourier

Le module de transformée de Fourier discrète de numpy comprend de nombreuses variantes, et les
transformées peuvent aussi être effectuées via le module équivalent fftpack de Scipy.

<sxh python; title : fonctions-FT-04.py> #!/usr/bin/env python #-*- coding: utf-8 -*- # graphes de
fonctions et des transformées de Fourier, utilisant numpy # et matplotlib pour les graphes

http://docs.scipy.org/doc/numpy/reference/routines.polynomials.package.html
http://docs.scipy.org/doc/numpy/reference/routines.polynomials.html
http://docs.scipy.org/doc/numpy/reference/routines.fft.html
http://docs.scipy.org/doc/scipy/reference/fftpack.html

2026/01/23 15:26 5/6 Les bases de NumPy

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

import numpy as np # directive d'importation standard de numpy from numpy import fft #
importation spécifique du module fft de numpy import matplotlib.pyplot as plt #from scipy import
fftpack # directive d'importation standard du module équivalent de scipy #
https://docs.scipy.org/doc/scipy-0.15.1/reference/api.html#guidelines-for-importing-functions-from-sci
py #from pylab import * # directive d'importation alternative en mode “pylab” –> supprimer les plt.,
fft.,

def f1(t):

 f = np.sin(np.pi*2.*t)
 return f

def f2(t):

 f = np.exp(-t/2.)*np.cos(np.pi*2.*t)
 return f

def f3(t):

 f =
(4./np.pi)*(np.sin(np.pi*2.*t)+np.sin(np.pi*6.*t)/3.+np.sin(np.pi*10.*t)/5.+
np.sin(np.pi*14.*t)/7.+np.sin(np.pi*18.*t)/9.)
 return f

une TF peut se faire via : # fft.fft() du fait de la directive from numpy import fft # , ou np.fft.fft() du
fait de import numpy as np # , ou fftpack.fft(y1) si on utilise le module de scipy x =
np.arange(0.0,10.0,0.025) y1 = f1(x) z1=fft.fft(y1) w1 = np.abs(z1[:len(z1)/2]) y2 = f2(x)
z2=fft.fft(y2) w2 = np.abs(z2[:len(z2)/2]) y3 = f3(x) z3=fft.fft(y3) w3 = np.abs(z3[:len(z3)/2])

doc subplot : http://matplotlib.org/api/pyplot_api.html?highlight=subplot#matplotlib.pyplot.subplot
plt.subplot(3,2,1) # sous-graphes en 3 lignes et 2 colonnes, graphe 1 plt.title('Fonctions')
plt.plot(x,y1) plt.xlabel(“t/s”) plt.ylabel(“A(t)”)

plt.subplot(3,2,2) # sous-graphes en 3 lignes et 2 colonnes, graphe 2 plt.title(u'Transformées de
Fourier') plt.plot(w1) plt.xlabel(“f/Hz”) plt.ylabel(“A(f)”)

plt.subplot(3,2,3) # sous-graphes en 3 lignes et 2 colonnes, graphe 3 plt.plot(x,y2) plt.xlabel(“t/s”)
plt.ylabel(“A(t)”)

plt.subplot(3,2,4) # sous-graphes en 3 lignes et 2 colonnes, graphe 4 plt.plot(w2) plt.xlabel(“f/Hz”)
plt.ylabel(“A(f)”)

plt.subplot(3,2,5) # sous-graphes en 3 lignes et 2 colonnes, graphe 5 plt.plot(x,y3) plt.xlabel(“t/s”)
plt.ylabel(“A(t)”)

plt.subplot(3,2,6) # sous-graphes en 3 lignes et 2 colonnes, graphe 6 plt.plot(w3) plt.xlabel(“f/Hz”)
plt.ylabel(“A(f)”)

plt.savefig('fonctions-fft.png') plt.show() </sxh>

Figure obtenue :

https://docs.scipy.org/doc/scipy-0.15.1/reference/api.html#guidelines-for-importing-functions-from-scipy
https://docs.scipy.org/doc/scipy-0.15.1/reference/api.html#guidelines-for-importing-functions-from-scipy
http://matplotlib.org/api/pyplot_api.html?highlight=subplot#matplotlib.pyplot.subplot

Last update:
2015/03/23
14:04

teaching:progappchim:numpy_simple https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1427115885

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 15:26

Références

Site officiel
NumPy reference
Page Wikipédia
Guide to NumPy
Tutoriel via l'exemple du jeu de la vie
http://wiki.scipy.org/Tentative_NumPy_Tutorial
Introduction à Numpy, Scipy et Matplotlib
NumPy: creating and manipulating numerical data, de Emmanuelle Gouillart, Didrik Pinte, Gaël
Varoquaux, and Pauli Virtanen

1)

(1,2),(3,4
2)

4,2
3)

2,3,4),dtype=complex) print d, d.ndim, d.shape, d.dtype # un tableau avec arange, et ensuite
reshape e1= np.arange(1,36,1) e=np.reshape(e1,(5,7

From:
https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:
https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1427115885

Last update: 2015/03/23 14:04

http://www.numpy.org/
http://docs.scipy.org/doc/numpy/reference/
http://fr.wikipedia.org/wiki/NumPy
http://csc.ucdavis.edu/~chaos/courses/nlp/Software/NumPyBook.pdf
http://www.loria.fr/~rougier/teaching/numpy/numpy.html
http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://math.mad.free.fr/wordpress/wp-content/uploads/intronumpy.pdf
http://scipy-lectures.github.io/intro/numpy/index.html
https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/teaching:progappchim:numpy_simple?rev=1427115885

	Les bases de NumPy
	Directive d'importation
	Tableaux numériques
	Fonctions mathématiques principales :
	Autres fonctions

	Algèbre linéaire
	Autres fonctions

	Statistiques élémentaires
	Itérations sur les tableaux
	Manipulation de polynômes
	Transformées de Fourier
	Références

