
2026/02/01 08:19 1/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Notions fondamentales

Aide mémoire synthétique sur le langage Python.

Règles de base

Ces règles peuvent être testées via le mode interactif de Python (en utilisant la fenêtre “Shell” ou
console de l'éditeur Idle ou Idle3 par exemple).

Définition d'une donnée : suite finie de nombres binaires
Définition d'une variable dans un langage de programmation : apparaît sous un nom de
variable, mais pour l'ordinateur il s'agit d'une référence désignant une adresse mémoire, c'est-
à-dire un emplacement précis dans la mémoire vive
Types de variables, dont la déclaration n'est pas nécessaire. Une variable est automatiquement
créée avec le type qui correspond au mieux à la valeur fournie. Les types courant sont les
“entier”, “flottant”, “chaîne de caractères”, “complexe”, “liste”,…
Mots réservés : on ne peut pas utiliser comme noms de variables les 29 « mots réservés »
utilisés par le langage lui-même (if, elif, while, for, else, print,…).
Instruction d'affectation utilisant le signe = et réalisant les opérations de :

créer et mémoriser un nom de variable ;
lui attribuer un type bien déterminé ;
créer et mémoriser une valeur particulière ;
établir un lien (par un système interne de pointeurs) entre le nom de la variable et
l'emplacement mémoire de la valeur correspondante

En mode interactif, entrer le nom d'une variable, puis <Enter> provoque l'affichage de sa
valeur ; Dans un programme, on utilise print. Le nombre de chiffres affichés peut varier
(essayer par exemple “1/3”. et “print (1/3.)”)
Typage automatique. Attention aux nombres 1, 1. etc (différencier 20/3 et 20./3 par exemple)
Affectation multiple : il est possible d'effectuer plusieurs affectations en une seule
instruction, par exemple : a, b = 4, 8.33
Opérateurs arithmétiques : “+”, “-”, “*”, “/”, “/ /” “* *”, “%” sont les symboles permettant
d'effectuer les opérations classiques : addition, soustraction, multiplication, division (normale ou
entière), puissance et opérateur modulo ou reste d'une division d'entier.
Expressions = variables combinées par des opérateurs, qui donnent finalement des valeurs,
pouvant aussi être interprétées logiquement (vrai-faux)
Règle “PEMDAS” de priorité des opérations : Parenthèses, Exposant, Multiplication, Division,
Addition, Soustraction. Pour deux opérateurs de même priorité, l'évaluation est effectuée dans
l'ordre de gauche à droite

Scripts ou programmes Python, où les conserver, et comment les nommer :

il est utile de donner des noms de programmes signifiants, d'éviter les espaces et caractères spéciaux
dans les noms, d'utiliser systématiquement l'extension “.py” et de les classer en répertoires suivant
leur rôle ou utilité (exercice, exemple simple, application de calcul, utilisation graphique, interface,…).

Python propose des lignes directrices sur le style d'écriture des programmes, mettant en avant la

Last
update:
2022/05/09
13:31

teaching:progappchim:notions_fondamentales https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 08:19

lisibilité. Il s'agit de la pep8. Le document du blog ingeniance donne les quelques recommandations
les plus importantes, en français. Le site Real Python propose un tuto : How to Write Beautiful Python
Code With PEP 8

Structures conditionnelles et répétitives

Pour résoudre un problème informatique, il faut toujours effectuer une série d'actions dans un certain
ordre. La description structurée de ces actions et de l'ordre dans lequel il convient de les effectuer
s'appelle un algorithme. Leur compréhension ne nécessite pas un ordinateur.

Suggestions : rechercher quelques algorithmes classiques, comme :

trouver le plus grand nombre d'une liste de valeurs
calculer une moyenne d'une liste de valeurs
Calculer la factorielle d'un nombre
Dresser la suite de Fibonacci
…

Un programme est la transcription dans un langage informatique d'un algorithme donné pour
résoudre un problème.
La programmation moderne utilisent des séquences d'instructions, des structures de sélection
et de répétition.

Sélection ou instruction conditionnelle

Cf. la documentation officielle ou cet autre cours avec des illustrations et des exemples de code
exécutable sur le site pythontutor.

En python, une indentation par tabulation (dans les faits 4 espaces) délimite le bloc d'instruction en
rapport avec les conditions testées, dont la valeur est évaluée comme “vrai” (true) ou “faux” (false).
Exemple :

a = 0
if a > 0 :
 print("a est positif")
 print("car il est strictement plus grand que zéro")
elif a < 0 :
 print("a est négatif")
else:
 print("a est nul")

L'utilisation de “elif” est liée à une condition chaînée. L'utilisation de “else” sous-tend une condition
alternative. un simple “if” correspond à une expression conditionnelle.

Les Opérateurs de comparaison sont :
== (“égal à”),
!= (“différent de”), à utiliser préférentiellement à <>

https://www.python.org/dev/peps/pep-0008/
https://blog.impulsebyingeniance.io/outils-et-bonnes-pratiques-pour-un-code-python-de-bonne-qualite/
https://realpython.com/python-pep8/
https://realpython.com/python-pep8/
http://fr.wikipedia.org/wiki/Algorithmique
https://docs.python.org/3/reference/compound_stmts.html#the-if-statement
http://www.courspython.com/tests.html
http://www.pythontutor.com

2026/02/01 08:19 3/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

> (“plus grand que”),
< (“plus petit que”),
>= (“plus grand ou égal à”),
< = (“plus petit ou égal à”)

Blocs d'instructions : plusieurs instructions consécutives au sein d'une structure
(conditionnelle, ou autre, cf. plus loin), et qui partagent donc le même décalage d'indentation.
Structures imbriquées : une structure au sein d'une autre structure ! (aisément identifiables
grâce à l'indentation).
Les commentaires commencent toujours par un caractère dièse (#) et s'étendent jusqu'à la
fin de la ligne courante. Idéalement, il faut aussi penser à utiliser dans les définitions (des
fonctions, des classes,…) une chaîne de documentation, débutant et se terminant par les
'triples quotes' : “”“

Ces dispositions sont capitales pour assurer la compréhension d'un code source, par une autre
personne, mais aussi par le programmeur lui-même lorsqu'il reprend un code longtemps après son
écriture.

Les instruction if peuvent souvent être remplacées par une alternative plus lisible, plus générale. Cf.
par exemple 3 Alternatives to If Statements That Make your Code More Readable (Jonny Jackson,
Medium, 24/09/2020)

Dans quelques cas, il est intéressant d'écrire les instructions conditionnelles sur une seule ligne de
code. Cf. Python If-Else Statement in One Line — Ternary Operator Explained - Single-line conditionals
in Python? Here’s when to and when NOT to use them Dario Radečić, Medium, 11/01/2022

Structures répétitives

L'instruction while (documentation officielle) Permet d'exécuter des commandes tant que la
condition qui suit (éventuellement combinée) est vraie. Exemple :

a = 0
while a < 12 :
 a = a + 1
 print(a, a**2, a**3)

L'instruction for (documentation officielle) permet d'itérer sur une liste, ou aussi sur les caractères
successifs d'une séquence “chaîne de caractères”.

for i in range(11):
 print(i, i**2, i**3)

Cf. cet autre cours avec des illustrations et des exemples de code exécutable sur le site pythontutor.

 : ajouter d'autres possibilités telles que :

Looping Techniques in Python - Let’s learn about looping techniques using functions like
enumerate, zip, sorted, reversed in python Indhumathy Chelliah; Medium, 30/07/2020
How To Use For Loops Better in Python - A few functions that can improve your looping logic
Yong Cui, Medium, Jan 8, 2020

https://medium.com/swlh/3-alternatives-to-if-statements-to-make-your-python-code-more-readable-91a9991fb353
https://towardsdatascience.com/python-if-else-statement-in-one-line-ternary-operator-explained-eca2be64b7cc
https://towardsdatascience.com/python-if-else-statement-in-one-line-ternary-operator-explained-eca2be64b7cc
https://docs.python.org/3/reference/compound_stmts.html#while
https://docs.python.org/3/reference/compound_stmts.html#for
http://www.courspython.com/boucles.html
http://www.pythontutor.com
https://medium.com/analytics-vidhya/looping-techniques-in-python-3bbf907b8dfa
https://medium.com/analytics-vidhya/looping-techniques-in-python-3bbf907b8dfa
https://medium.com/better-programming/how-to-use-for-loops-better-in-python-1dfbc3d9e91f

Last
update:
2022/05/09
13:31

teaching:progappchim:notions_fondamentales https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 08:19

The Art of Writing Loops in Python - Simple is better than complex Yang Zhou, Medium,
03/05/2021

Principaux types de données

Les types de données numériques principaux :

Cf. la documentation officielle

Le type de donnée entier (integer) est encodé sous la forme d'un bloc de 4 octets (ou 32 bits).
Or la gamme de valeurs décimales qu'il est possible d'encoder sur 4 octets seulement s'étend
de -2147483648 à + 2147483647. Au-delà de ces limites, l'encodage des entiers devient du
type long, avec une précision quasi infinie. Sous python 3, les entiers sont d'office “long”.

Si les opérandes sont entiers, l'opération de division avec l'opérateur ”/“ se fait en
arithmétique entière, sous python 2. L'opérateur spécifique ”/ /“ effectue l'opération
de division entière. Sous python 3, la division avec ”/“ fournit d'office le résultat
“float”.

Exemple : différencier 2/3 et 2./3. Il est important d'indiquer un des nombres avec le point décimal
pour forcer l'arithmétique en “float”. Une confusion de type à ce niveau peut provoquer des
comportements indésirables des programmes!!!

Float : permet de manipuler des nombres (positifs ou négatifs) compris entre 10^-308 et
10^308 avec une précision de 12 chiffres significatifs. Ces nombres sont encodés d'une
manière particulière sur 8 octets (64 bits) dans la mémoire de la machine.
complex : les nombres complexes sont utilisables aussi facilement que les autres nombres. On
peut les initialiser comme ceci :

z1=complex(1,2)

ou encore comme cela :

z2=3+5.67j

Les fonctions int(), float() et complex() permettent de transformer le type de la variable indiquée en
argument, avec en retour un code d'erreur si la transformation n'est pas possible. Des chaînes de
caractères contenant des représentations valides de nombres sont permises comme arguments, la
fonction int() appliquée à un argument “float” fournira la partie entière du nombre.

Le type de données texte ou "string" :

Cf. la documentation officielle et Dive Into Python 3

https://medium.com/techtofreedom/the-art-of-writing-loops-in-python-68e9869e4ed4
https://docs.python.org/3/library/stdtypes.html?highlight=encode#numeric-types-int-float-complex
https://docs.python.org/3/library/stdtypes.html?highlight=encode#text-sequence-type-str
http://www.diveintopython3.net/strings.html

2026/02/01 08:19 5/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Suite quelconque de caractères Unicode délimitée soit par des apostrophes (simple quotes), soit par
des guillemets (double quotes). '/' : l'antislash permet d'insérer un certain nombre de codes spéciaux
(sauts à la ligne, apostrophes, guillemets, etc.). Les chaînes de caractères sont des données
composites (qui rassemble dans une seule structure un ensemble d'entités plus simples). Python
considère qu'une chaîne de caractères est un objet de la catégorie des séquences immutables,
lesquelles sont des collections ordonnées d'éléments. Chaque caractère de la chaîne peut être
désigné par sa place dans la séquence, à l'aide d'un index, débutant à partir de 0. Exemple : mot[3],
mot[7],…

Essayez per exemple aussi de taper ces commandes dans l'interpréteur (idle)

mot="chimie"
print(mot[0])
print(mot[5])
print(mot[6])

Concaténation de chaînes :

c = "auto" + "mobile"

Longueur (nombre de caractères) d'une chaîne :

len(c)

Conversion en nombre (donnée numérique créée à partir d'une chaîne de caractères) :
int(“587”), float(“3.14”)
Pour la concaténation d'une liste de chaîne, la fonction join est plus adaptée que ”+“ (cf. ici) :

strings = ['A', 'bac', 'cali', 'jkppl']
text = ''.join(strings)
print(text)

Les caractères Unicode étant considérés comme abstraits dans Python 3, leur encodage (UTF-8,
UTF-16,…) n'est à prendre en considération que si on utilise la méthode .encode pour les convertir en
bytes.

Constantes

import string # directive d'importation obligatoire pour ces exemples

string.ascii_letters #
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
string.ascii_lowercase # 'abcdefghijklmnopqrstuvwxyz'
string.ascii_uppercase # 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
string.digits # '0123456789'

string.punctuation # '!”#$%&\’()*+,-./:;<=>?@[\\]^_`{|}~'
string.whitespace # ' \t\n\r\x0b\x0c'; \x0b is \v (vertical tab), \x0c is \f
(form feed)

http://fr.wikipedia.org/wiki/Unicode
https://towardsdatascience.com/do-not-use-to-join-strings-in-python-f89908307273
https://docs.python.org/3/library/stdtypes.html?highlight=encode#string-methods

Last
update:
2022/05/09
13:31

teaching:progappchim:notions_fondamentales https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 08:19

string.printable # = digits + ascii_letters + punctuation + whitespace

Modifications, recherches, index, vérifications,...

s.capitalize() # captilizes (first character becomes uppercase) the string
s.lower() # all characters become lowercase
s.casefold() # more rigorous lowercase (languages other than English are
covered)
s.upper() # all characters become uppercase

s.count(sub) # count occurences of substring sub in s
s.count(sub, start) # count occurences of substring sub starting from start
position in string s
s.count(sub, start, end) # count occurences of substring sub from start to
end — 1 position in string s
s.find(sub) # returns index of first occurence of substring sub in s, return
-1 if not found
s.find(sub, start) # returns index of first occurence of substring sub
starting from start position in string s, returns -1 if not found
s.find(sub, start, end) # returns index of first occurence of substring sub
from start to end — 1 position in string s, return -1 if not found
s.index(sub) # returns index of first occurence of substring sub in s,
raises error if not found
s.index(sub, start) # returns index of first occurence of substring sub
starting from start position in string s, raises error if not found
s.index(sub, start, end) # returns index of first occurence of substring sub
from start to end — 1 position in string s, raises error if not found
len(str) # returns length of string

s.startswith(prefix) # checks if s starts with prefix
s.startswith(prefix, start) # checks if s starts with prefix starting from
start position
s.startswith(prefix, start, end) # checks if s starts with prefix starting
from start position until end — 1 position
s.endswith(suffix) # checks if s ends with suffix
s.endswith(suffix, start) # checks if s ends with suffix starting from start
position
s.endswith(suffix, start, end) # checks if s ends with suffix starting from
start position until end — 1 position
s.isalnum() # checks if string is alphanumeric
s.isalpha() # checks if string contains only alphabets
s.isnumeric() # checks if string contains only numbers
s.islower() # checks if all alphabets in string s are lowercase
s.isupper() # checks if all alphabets in string s are uppercase
s.isspace() # checks if s is a space character

s.replace(old, new) # replaces substring old with substring new
s.replace(old, new, count) # replace substring old with substring new for

2026/02/01 08:19 7/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

count number of times starting from left side of string s
s.ljust(width) # puts width — len(s) spaces on the right side of string s
s.ljust(width, fillchar=c) # puts character c width — len(s) times on the
right side of string s
s.rjust(width) # puts width — len(s) spaces on the left side of string s
s.rjust(width, fillchar=c) # puts character c width — len(s) times on the
left side of string s
s.strip() # all spaces gone left and right both sides of string s
s.lstrip() # all spaces gone on left side of string s
s.rstrip() # all spaces gone on right side of string s
s.strip(k) # all substrings k gone left and right both sides of string s
s.lstrip(k) # all substrings k gone on left side of string s
s.rstrip(k) # all substrings k gone on right side of string s
s.split(‘,’) # splits the string by ‘,’; returns a list
s.split(‘::’) # splits the string by ‘::’; returns a list
s.split(‘ ‘) # splits the string by ‘ ‘; returns a list
s.zfill(width) # adds width — len(s) zeros on the left side; if a +/- sign
is there then zeros are added after it

s.join(l) # joins a list or string l with substring s

Applications à la détection de palindromes, anagrammes et pangrammes

string-palindrome-01.py

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
Created on Mon Jan 25 10:58:37 2021

@author: villersd

Un palindrome est un texte ou une séquence plus générale (notes de
musique,
code génétique,...), dont l'ordre des lettres (ou des notes,...) reste
le même
qu'on le lise de gauche à droite ou de droite à gauche.
Source : https://fr.wikipedia.org/wiki/Palindrome
"""
import unicodedata

def palindrome(string_to_check):
 if string_to_check.lower().replace(' ', '') ==
string_to_check.lower().replace(' ', '')[::-1]:
 return True
 else:
 return False

def remove_accents(input_str):

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:notions_fondamentales?codeblock=11

Last
update:
2022/05/09
13:31

teaching:progappchim:notions_fondamentales https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 08:19

 """
 Les lettres accentuées viennent compliquer le problème...
 cf.
https://stackoverflow.com/questions/517923/what-is-the-best-way-to-remo
ve-accents-normalize-in-a-python-unicode-string
 """
 nfkd_form = unicodedata.normalize('NFKD', input_str)
 return u"".join([c for c in nfkd_form if not
unicodedata.combining(c)])

string0 = 'Esope reste ici et se repose'
print(string0, palindrome(string0))

string1 = 'Ésope reste ici et se repose'
print(string1, palindrome(string1))

print(string1, remove_accents(string1),
palindrome(remove_accents(string1)))

string-anagramme-00.py

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
Created on Mon Jan 25 11:42:18 2021

@author: villersd

Une anagramme est un mot ou une expression obtenu en permutant les
lettres
d'un mot ou d'une expression de départ
Source : https://fr.wikipedia.org/wiki/Anagramme
"""
string1 = 'manoir'
string2 = 'romain'

print(string1, sorted(string1))
print(string2, sorted(string2))

exercice : utiliser cette fonction sorted() et appliquer les
transformations
de la fonction de vérification de palindromes pour détecter une
anagramme.

string_pangrammes-01.py

#!/usr/bin/env python3

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:notions_fondamentales?codeblock=12
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:notions_fondamentales?codeblock=13

2026/02/01 08:19 9/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

-*- coding: utf-8 -*-
"""
Created on Mon May 9 11:54:40 2022

@author: villersd

Test d'une chaîne pour connaître le nombre de lettres de l'apahabet
utilisées
et si elles le sont toutes (pangramme).
ref : https://fr.wikipedia.org/wiki/Pangramme

"""
import string
print('ASCII letters : ', string.ascii_lowercase)

test string :
ts = "Portez ce vieux whisky au juge blond qui fume"

dict count strategy
letter_count_dict = dict((key, ts.lower().count(key)) for key in
string.ascii_lowercase)
print(letter_count_dict)

list count strategy
letter_count_list = [ts.lower().count(key) for key in
string.ascii_lowercase]
print(letter_count_list)

using all()
print(all(letter_count_list))

one-liner :
print(all([ts.lower().count(key) for key in string.ascii_lowercase]))
print("All ASCII letters : ", all(["Portez ce vieux whisky au juge
blond qui fume".lower().count(key) for key in string.ascii_lowercase]))

Pour une technique de détection utilisant les nombres premiers :
https://mobile.twitter.com/fermatslibrary/status/1385957963429515266 (programmer et comparer !)

Chaînes préfixées

Les chaînes pêuvent être préfixées, pour tenir compte de types et d'utilisations particulières :

Prefix Utilisation Exemple
None chaîne de caractère habituelle “Hello world !”

r raw string (utilisant plusieurs caractères \
s'échappement) print(r”C:\Users\johndoe\documents“)

b chaîne binaire b”byte string“

https://mobile.twitter.com/fermatslibrary/status/1385957963429515266

Last
update:
2022/05/09
13:31

teaching:progappchim:notions_fondamentales https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 08:19

Prefix Utilisation Exemple
u chaîne unicode u”Unicode string“
f chaîne de formatage fstring print(f”My cool string is called {name.upper()}.“)

Références

Handling Unicode Strings in Python
Unicode & Character Encodings in Python: A Painless Guide, Brad Solomon, Real Python
https://stackoverflow.com/questions/36146214/cannot-convert-unicode-to-utf-8-in-python

Les séquences binaires

Cf. la documentation officielle

Destinés à la manipulation de données sous forme binaire, les bytes ne peuvent pas être utilisée pour
des textes, même s'il y a une correspondance pour les 127 premiers caractères (codes ASCII). Leur
entrée peut se faire dans ce cas via par exemple

"bdata = b'ceci est un texte ASCII'

Depuis la version 3 de Python, la séparation des utilisations des séquences binaires et des chaînes de
caractère est bien différenciée.

Les booléens (vrai ou faux)

Cf. Algèbre de Boole sur Wikipedia

https://docs.python.org/2/library/stdtypes.html#truth-value-testing (Python 2)
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values (Python 3)
les opérateurs booléens
les opérateurs de comparaison

Les 6 opérateurs ==, !=, <, >, ⇐, >= sont destinés à comparer des valeurs d'objets (cf.
les instructions conditionnelles,…)
Les opérateurs is et is not sont destinés à comparer l'identité d'objets, en particulier des
objets uniques (singletons) du langage, comme None

Les listes

Cf. la documentation officielle

Collection d'éléments séparés par des virgules, l'ensemble étant enfermé dans des crochets. Ce
sont des collections ordonnées (séquences) d'objets, qui sont modifiables.
len() renvoie le nombre d'éléments d'une liste
la fonction del permet d'effacer des éléments
Les listes sont des objets sur lesquels on peut agir à l'aide de méthodes, comme .append pour
ajouter un élément, .remove pour en enlever. Voir la documentation en ligne (Library Reference

https://blog.emacsos.com/unicode-in-python.html
https://realpython.com/python-encodings-guide/
https://stackoverflow.com/questions/36146214/cannot-convert-unicode-to-utf-8-in-python
https://docs.python.org/3/library/stdtypes.html?highlight=encode#binary-sequence-types-bytes-bytearray-memoryview
http://fr.wikipedia.org/wiki/Alg%C3%A8bre_de_Boole_%28logique%29
https://docs.python.org/2/library/stdtypes.html#truth-value-testing
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not
https://docs.python.org/3/library/stdtypes.html#comparisons
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

2026/02/01 08:19 11/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

- Built-in Objects - Built-in Types - Sequence types - Mutable Sequence types). Exemples :

a=[12,15,7,13,21,24,11,13,21,27,5]
print(a,len(a))
a.append(8)
print(a,len(a))
a.reverse()
print(a,len(a))
b=a.pop(5)
print(b)
print(a,len(a))
a.insert(5,99)
print(a,len(a))
a.sort()
print(a,len(a))

range(start, stop, step) avec des arguments entiers renvoie une liste d'entiers commençant par
start, incrémentés chaque fois de la valeur step, jusque la valeur stop exclue.

 : → generator depuis python 3 !
La fonction enumerate permet de parcourir les éléments d'une liste en même temps
que leur indice, bien plus pratiquement qu'en passant par l'utilisation de range :

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""
enumerate : exemples
"""
recipients = ['matras', 'erlenmeyer', 'verre à pied', 'ballon', 'bécher']
print(', '.join(recipients))
méthode "classique"
for i in range(len(recipients)):
 print('Récipient # ', i, ' : ', recipients[i])
méthode avec enumerate
for i,recipient in enumerate(recipients):
 print('Récipient # ', i, ' : ', recipient)

 : piles, files/queues, pop, del li[i], li.clear(), li.insert(ind, item), li.remove(item),
li.reverse(),…

Références

Python List Comprehension Tutorial
list comprehension,… : Notes d'apprentissage de Python : les compréhensions

Les tuples

Analogues aux listes, mais utilisant les parenthèses pour leur écriture, les tuples ne peuvent pas être

https://docs.python.org/2/library/functions.html#enumerate
https://www.datacamp.com/community/tutorials/python-list-comprehension
https://tgits.github.io/post/notes_apprentissage_python_comprehension/

Last
update:
2022/05/09
13:31

teaching:progappchim:notions_fondamentales https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 08:19

modifiés. De ce fait, une méthode fonction de hachage peut être appliquée aux tuples, mais pas aux
listes, ce qui rend les tuples utilisables comme clés de dictionnaires ou éléments d'ensembles.

Référence :

Python Tuples Tutorial

Les dictionnaires

Cf. la documentation officielle

Un dictionnaire permet de stocker des paires (clé : valeur), où les clés doivent être uniques, non
modifiables, et où les valeurs sont n'importe quel objet. Il est délimité par des accolades {}, et les
couples clé : valeur sont séparés par des virgules. Au sein de ce couple, le caractère ”:“ sépare la clé
de la valeur. Les éléments peuvent être accédés suivant les clés. Dès qu'on doit utiliser à la fois la clé
et la valeur, il est recommandé d'utiliser la fonction ”.items()“, comme ceci :

#!/usr/bin/env python
-*- coding: utf-8 -*-

dico = {"Nom": "Belgique",
 "Capitale":"Bruxelles",
 "Population":11239755,
 "Superficie":"30 528 km2",
 "Monnaie":"Euro",
 }

for key, val in dico.items():
 print("{} = {}".format(key, val))

Depuis Python 3.9, l'opérateur | est utilisé pour fusionner les dictionnaires tandis que l'opérateur |=
peut être utilisé pour mettre à jour les dictionnaires (/pep-0584.

Références diverses

https://www.datacamp.com/community/tutorials/python-dictionary-tutorial
5 Advanced Operations Using Dictionaries in Python - Better Programming - Medium

Les ensembles

Un ensemble (set) est une collection non ordonnée d'éléments non répétés (uniques). L'utilisation des
ensembles se fait par analogie avec les propriétés et opérations de la théorie mathématique des
ensembles : appartenance, cardinalité (nombre d'éléments), union, intersection, différence, …

https://docs.python.org/2/library/stdtypes.html#set-types-set-frozenset (Python 2)
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset (Python 3)
http://en.wikibooks.org/wiki/Python_Programming/Sets

http://fr.wikipedia.org/wiki/Fonction_de_hachage
https://www.datacamp.com/community/tutorials/python-tuples-tutorial
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://www.python.org/dev/peps/pep-0584/
https://www.datacamp.com/community/tutorials/python-dictionary-tutorial
https://medium.com/better-programming/5-advanced-operations-using-dictionaries-in-python-5f8edb4719fa
http://en.wikipedia.org/wiki/Set_%28computer_science%29
http://fr.wikipedia.org/wiki/Ensemble
https://docs.python.org/2/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
http://en.wikibooks.org/wiki/Python_Programming/Sets

2026/02/01 08:19 13/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Python Sets: What, Why and How

Les éléments d'ensembles doivent être différents (et le rester), donc posséder un
caractère immuable (ou immutable en anglais), et de là hachable.

Il est donc plus efficace de tester l'appartenance d'un élément à un ensemble (éventuellement créé
au départ d'une liste) plutôt que de tester la présence dans une liste (toute la liste doit être
parcourue) :

li = [4, 8, 9, 1, 6, 8, 4]
pas efficace :
if 8 in li:
 print("8 est dans la liste")

efficace :
se=set(li)
if 8 in se:
 print("8 est dans la liste")

D'autres types

Des types “haute-performance” sont aussi intégrés à Python, via le module “collections” à importer :

Counter → cf. cet exemple d'utilisation de Counter
deque (double-ended queue)
defaultdict
namedtuple → cf. cet exemple d'utilisation de namedtuple
OrderedDict

Consulter la documentation officielle, et ces liens :
http://pymbook.readthedocs.org/en/latest/collections.html
Python 201: What’s a Deque?
The Most Undervalued Standard Python Library Collections for data scientists Tyler
Folkman, Medium, Oct 26, 2019 (video)
Introducing high-performance datatypes in Python with the collections library George Seif,
Medium, Oct 15, 2019
Your One-Stop Guide to Collections in Python - Make your code awesome using high-order
containers Felix Antony, Medium, 21/01/2021
Write Ultra-Concise Code with Python collections | by Thomas Hikaru Clark | Oct, 2021 |
Towards Data Science Thomas Hikaru Clark, Medium, 11/10/2021

Des types non intégrés par défaut dans Python peuvent facilement être implémentés, en utilisant les
types répandus. C'est pas exemple le cas des arbres (informatique, théorie des graphes) :

One-line Tree in Python avec defaultdict
a general tree implementation in python
Looking for a good Python Tree data structure
How can I implement a tree in Python? Are there any built in data structures in Python like in
Java?

https://www.pythoncheatsheet.org/blog/python-sets-what-why-how
http://fr.wikipedia.org/wiki/Objet_immuable
http://en.wikipedia.org/wiki/Immutable_object
http://en.wiktionary.org/wiki/hashable
https://dvillers.umons.ac.be/wiki/teaching:progappchim:collection_counter_exemple
https://dvillers.umons.ac.be/wiki/teaching:progappchim:collection_namedtuple_exemple
https://docs.python.org/2/library/collections.html
http://pymbook.readthedocs.org/en/latest/collections.html
https://pymotw.com/2/collections/counter.html] * [[https://dzone.com/articles/python-201-whats-a-deque
https://towardsdatascience.com/the-most-undervalued-standard-python-library-14021632f692
https://levelup.gitconnected.com/introducing-high-performance-datatypes-in-python-with-the-collections-library-3d8c334827a5
https://medium.com/better-programming/your-one-stop-guide-to-collections-in-python-4c0b36243561
https://medium.com/better-programming/your-one-stop-guide-to-collections-in-python-4c0b36243561
https://towardsdatascience.com/write-ultra-concise-code-with-python-collections-ab79f03bb54
https://towardsdatascience.com/write-ultra-concise-code-with-python-collections-ab79f03bb54
https://fr.wikipedia.org/wiki/Arbre_enracin%C3%A9
https://gist.github.com/hrldcpr/2012250
https://docs.python.org/2/library/collections.html#collections.defaultdict
http://stackoverflow.com/questions/2482602/a-general-tree-implementation-in-python
http://stackoverflow.com/questions/3009935/looking-for-a-good-python-tree-data-structure
http://stackoverflow.com/questions/2358045/how-can-i-implement-a-tree-in-python-are-there-any-built-in-data-structures-in
http://stackoverflow.com/questions/2358045/how-can-i-implement-a-tree-in-python-are-there-any-built-in-data-structures-in

Last
update:
2022/05/09
13:31

teaching:progappchim:notions_fondamentales https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 08:19

Python n'intègre pas par défaut des types triés (sorted list, sorted dict, sorted set). Une solution en
“pure python” existe via les SortedContainers

À ce stade de votre apprentissage, vous pouvez utiliser l'outil Online Python tutor pour
visualiser dans un navigateur web le déroulement de petits programmes proposés sur
le site ou écrits par vos soins ! Voici ce que cela donne pour les deux structures de
répétition while et for :

Code "while" dans Online Python Tutor
Code "for" dans Online Python Tutor

Pensez ensuite à essayer des modifications du code !

Fonctions prédéfinies

input() permet d'entrer des données au clavier. On peut dans certains cas convertir la chaîne
rentrée par int() ou float(), selon le type attendu.

li = input("Donnez une température (en °C) ? ")
print(li, type(li))
temp = float(li)
print(temp, type(temp))

Importer un module de fonctions. Exemples : from math import * –> les fonction abs, sqrt, sin,…
deviennent accessibles ! Essayez par exemple ceci :

a = 16
print(sqrt(a))
from math import *
print(sqrt(a))

Veracité/fausseté d'une expression

Une expression aboutissant à une valeur logique rend soit 0 ou faux, soit tout autre valeur ou vrai. Cf
les rudiments de logique booléenne ! Essayez :

a = "coucou"
b = "coucou"
c = "cou"
d = (a == b)
print(d)

http://www.grantjenks.com/docs/sortedcontainers/
http://www.pythontutor.com/
http://www.pythontutor.com/visualize.html#code=a+%3D+0%0Awhile+a+%3C+12+%3A%0A++++a+%3D+a+%2B+1%0A++++print+a,+a**2,+a**3&mode=display&origin=opt-frontend.js&cumulative=false&heapPrimitives=false&drawParentPointers=false&textReferences=false&showOnlyOutputs=false&py=2&rawInputLstJSON=%5B%5D&curInstr=0
http://pythontutor.com/visualize.html#code=for+i+in+range(11)%3A%0A++++print+i,+i**2,+i**3&mode=display&origin=opt-frontend.js&cumulative=false&heapPrimitives=false&drawParentPointers=false&textReferences=false&showOnlyOutputs=false&py=2&rawInputLstJSON=%5B%5D&curInstr=0

2026/02/01 08:19 15/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

print(int(d))
d = (a == c)
print(d)
print(int(d))
print(not(d))
...

Modules turtle et xturtle

pour apprendre à programmer en créant des petits dessins

Le module turtle permet énormément de possibilités de dessin, même très simple. Par exemple,
demander un nombre de côté et dessiner le polygone régulier correspondant,…

Pour ceux qui voudraient aller plus loin dans l'usage de turtle, il est possible d'utiliser une
amélioration, le module xturtle, et les exemples qui l'accompagnent (attention, le module xturtle.py
doit être dans le même répertoire que tout programme python qui y fait appel).

Ce module est disponible ici. Vous devez décompresser son contenu (essentiellement xturtle.py) dans
C:\Python27\Lib\site-packages\xturtle0.95 Si vous travaillez sur un ordinateur pour lequel vous n'avez
pas les droits d'écriture, vous pouvez les placer ailleurs. Il est alors nécessaire que le module
xturtle.py et tout programme qui en fait usage soient dans le même répertoire.

Fonctions originales

Définir une fonction et ses paramètres :

def nomdelafonction(liste de paramètres):
 ...
 bloc d'instructions indenté

Les fonctions peuvent n'avoir aucun paramètre, mais ceux-ci sont souvent très utiles pour exécuter
les instructions de la fonction.

Dans une autre partie (programme principale ou autre fonction), on fait appel à la fonction, en
précisant des valeurs particulières qui seront affectées aux paramètres de la fonction. On parle alors
des arguments de la fonction, qui peuvent être des constantes ou des variables. Une fonction au
sens classique du terme renvoie une valeur qui sera reprise comme un “résultat” au niveau de la
ligne qui a fait appel à la fonction.

Exemple (réalisable en mode interactif) :

def plus(a, b):
 return a + b
...
x = plus(3,9)
print(x)
plus(x,8)

http://code.google.com/p/xturtle/downloads/list

Last
update:
2022/05/09
13:31

teaching:progappchim:notions_fondamentales https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 08:19

print(x)

Les paramètres décrivent ce qui est référencé dans la définition de la fonction
Les arguments décrivent ce qui est “envoyé” à la fonction, là où elle est
utilisée
Chaque appel de la fonction peut utiliser des arguments différents

Variables locales et globales

Les variables définies à l'intérieur d'une fonction ne sont compréhensibles qu'au sein et à partir de
cette fonction, on les appelles des variables locales.

Python peut lire, mais pas modifier par affectation les variables extérieures à l'espace local. C'est le
cas des variables passées en paramètres d'une fonction. Si une variable de même nom est créée en
version locale, c'est seulement celle-ci qui sera connue localement.

Si une variable extérieure (en paramètre ou non) se voit appliquer une méthode, la variable est
cependant modifiée.

Par opposition, les variables globales sont définies “à l'extérieur de la fonction” mais pourront être
modifiées dans une fonction. Pour cela, on déclare à Python par le mot-clé global que la variable à
utiliser (modifier par réaffectation) dans le corps de la fonction est globale.

Il est dangereux d'utiliser dans les grands programmes des variables globales, et il est préférable de
n'utiliser que des variables locales et de transmettre explicitement via les paramètres de la fonction
tout ce qui est extérieur et peut lui être utile. Sinon, il y a un risque de perturber le fonctionnement de
la fonction à cause d'une modification non attendue de la variable globale.

Pour obtenir un dictionnaire des variables globales ou locales à une portée donnée (scope) du code, il
suffit d'utiliser les méthodes “globals()” et “locals()”.

Cf.
http://fr.openclassrooms.com/informatique/cours/apprenez-a-programmer-en-python/portee-des-varia
bles-et-references, http://python-textbok.readthedocs.io/en/1.0/Variables_and_Scope.html

Tester aussi ce code :

variables_locales_globales.py

#!/usr/bin/env python
-*- coding: utf-8 -*-

def chipote(in1):
 in1 = in1 + 5
 print("in1 =", in1," dans chipote")
 print("a=",a," dans chipote")

http://fr.wikipedia.org/wiki/Variable_locale
http://fr.wikipedia.org/wiki/Variable_globale
http://fr.openclassrooms.com/informatique/cours/apprenez-a-programmer-en-python/portee-des-variables-et-references
http://fr.openclassrooms.com/informatique/cours/apprenez-a-programmer-en-python/portee-des-variables-et-references
http://python-textbok.readthedocs.io/en/1.0/Variables_and_Scope.html
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:notions_fondamentales?codeblock=24

2026/02/01 08:19 17/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

 b = 8
 print("b=",b," dans chipote")
 c = a + 10
 print("c=",c," dans chipote")
 e = b + in1
 print("e=",e," dans chipote")
 li.append(b)
 global f
 f = f + 20

li=[1, 2, 3]
b = 4
a = 5
f = 13
print("f=",f)
chipote(a)
print("a=",a)
print("f=",f)
chipote(a)
print(li)
print("f=",f)

Autres références :
Global, Local and Nonlocal variables in Python
Many Python Programmers Cannot Solve This Puzzle - A brief introduction to “Python
under the hood” for beginners Naser Tamimi, Medium, Dec 23, 2020

Passage d'arguments par tuples et dictionnaires

Les arguments d'une fonction peuvent être transmis via un tuple en préfixant le nom du tuple
par le symbole * (on utilise en général l'identifiant “*args” pour le tuple)
Les arguments d'une fonction peuvent être transmis via un dictionnaire dont les clés
correspondent aux arguments nommés dans la définition de la fonction, en préfixant le nom du
dictionnaire par les ** (on utilise en général l'identifiant ”**kwargs“ pour le dictionnaire)

Passage par tuple

fonction_args_tuple.py

#!/usr/bin/env python
-*- coding: utf-8 -*-

def liste_args(*args):
 """ imprime les arguments passée en tuple (ordonnés)
 """
 print(args)

liste_args('pommes','poires','scoubidous','apples','peaches','cherries'

https://towardsdatascience.com/global-local-and-nonlocal-variables-in-python-6b11c20d73b0
https://towardsdatascience.com/many-python-programmers-cannot-solve-this-puzzle-c5950841d14d
https://towardsdatascience.com/many-python-programmers-cannot-solve-this-puzzle-c5950841d14d
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:notions_fondamentales?codeblock=25

Last
update:
2022/05/09
13:31

teaching:progappchim:notions_fondamentales https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 08:19

)

Output :

('pommes', 'poires', 'scoubidous', 'apples', 'peaches', 'cherries')

Passage par dictionnaire

fonction_args_dictionnaire.py

#!/usr/bin/env python
-*- coding: utf-8 -*-

def liste_kwargs(**kwargs):
 """ imprime les arguments passée en dictionnaire
 """
 for key, value in kwargs.items():
 print(key,':',value)

premier type d'appel
liste_kwargs(entrée='homard', plat='poularde', dessert='tarte')

second type d'appel
dico = {'entree': 'homard', 'plat': 'poularde', 'dessert': 'tarte'}
print(dico)
liste_kwargs(**dico)

Output :

entrée : homard
dessert : tarte
plat : poularde
{'entree': 'homard', 'dessert': 'tarte', 'plat': 'poularde'}
entree : homard
dessert : tarte
plat : poularde

Modules de fonctions

Des fonctions ou simplement des déclarations de variables peuvent être définies et regroupées dans
un fichier (.py), et ensuite renseignées pour leur utilisation dans un programme grâce à la directive
d'importation.

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:notions_fondamentales?codeblock=27

2026/02/01 08:19 19/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Exemples de modules de déclarations de variables

Constantes physiques
…

Directive d'importation

Il y a 2 façons essentielles d'importer toutes les fonctionnalités définies dans un module dont le nom
est “nomdemodule” :

import nomdemodule1.
from nomdemodule import *2.

Dans le premier cas, les fonctions seront appelables avec des noms tels que “nomdemodule.func1”,
et les concepteurs des modules proposent souvent l'utilisation d'un alias par une directive
recommandée telle que “import nomdemodule ad ndm”. Les appels sont alors du type “ndm.func1”.

Dans le deuxième mode, la même fonction sera utilisable avec le nom “func1”. Du fait de l'évolution
de modules, il peut devenir difficile de détecter quelle fonction devient manquante avec ce mode
d'appel. Avec cette deuxième méthode, il est préférable de de n'importer qu'une seule fonction
particulière (ou les quelques nécessaires) au lieu de toutes celles qui sont présentes dans le module
(avec *). Exemple :

from nomdemodule import func13

Références :

The Definitive Guide to Python import Statements
Absolute vs Relative Imports in Python
Importing Packages in Python - Exploring different ways to import packages in Python
Indhumathy Chelliah, Medium, Oct 24, 2020
3 Key Skills for Handling Modules in Python by Yang Zhou, TechToFreedom, Mar, 2021, Medium

…

Test sur le programme "main"

La variable python __name__ contient '__main__' si l'instruction est invoquée dans le programme
“principal” appelé ou contient le nom du module si cette inscription est présente au niveau d'un
module appelable (donc importé).

Le rôle de la structure conditionnelle if __name__ == '__main__': incluse dans de nombreux modules
de fonctions est de n'exécuter la suite du code que si le module/programme python concerné est le
programme principal. Il se peut en effet que ce fichier soit appelé en tant que module par une
directive d'importation écrite dans un autre programme. Dans ce dernier cas, le code qui suit la ligne
if __name__ == '__main__': ne sera pas lancé, mais toutes les fonctions définies seront reconnues et
utilisables par le programme appelant !

Pour bien comprendre l'utilité de ce test, décompressez les 4 fichiers python de cette

http://www.hjcb.nl/python/physcon.html
https://chrisyeh96.github.io/2017/08/08/definitive-guide-python-imports.html
https://realpython.com/absolute-vs-relative-python-imports/
https://medium.com/dev-genius/importing-packages-in-python-fb3f4a64ed14
https://medium.com/techtofreedom/3-key-skills-for-handling-modules-in-python-d644c5e5682
https://dvillers.umons.ac.be/wiki/_media/teaching:progappchim:if_name_main_.zip

Last
update:
2022/05/09
13:31

teaching:progappchim:notions_fondamentales https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 08:19

archive, étudiez-les et faites les fonctionner !

Référence :

The Reason Behind if __name__ == ‘__main__’ in Python

Espaces de noms (namespaces)

Lorsque l'interpréteur Python exécute “import nomdemodule”, l'environnement crée un espace de
noms “nomdemodule”, contenant les variables et fonctions du module nomdemodule, ce qui permet
de regrouper ces fonctions et variables sous un préfixe unique et spécifique, qui explique les appels
sous la forme “nomdemodule.func1”. C'est une garantie pour éviter tout conflit entre des fonctions
portant des noms identiques, mais tirées de modules différents. Le prix à payer est de sans cesse
devoir expliciter l'espace de nom. Celui-ci peut cependant être condensé lors de la directive
d'importations :

import nomdemodule as mdul

pour comprendre, essayez par exemple ces directives en mode interactif sur le
module math
pour les programmes longs et utilisant plusieurs modules, choisissez d'utiliser
les namespaces
ne mélangez jamais les deux techniques d'importation

Pour en savoir plus :

http://effbot.org/zone/import-confusion.htm
http://fr.openclassrooms.com/informatique/cours/apprenez-a-programmer-en-python/a-la-decou
verte-des-modules

Impression formatée de texte et nombres (print)

On peut créer facilement une sortie “imprimée” formatée de données en utilisant des paramètres de
formatage de l'instruction print (inspirés de l'instruction printf du langage C).

Par exemple, si on veut sortir la ligne suivante en disposant de deux variables (t et nmol) :

Au temps = 0.6 heure, la réaction a consommé 1.23 moles de réactif.

On peut obtenir cette ligne par l'instruction suivante, en Python 3 (print sous forme d'une fonction) :

print('Au temps =%g heure, la réaction a consommé %.2f moles de réactif.' %
(t,nmol))

https://dvillers.umons.ac.be/wiki/_media/teaching:progappchim:if_name_main_.zip
https://medium.com/better-programming/the-reason-behind-if-name-main-in-python-e633634f0dd0
http://effbot.org/zone/import-confusion.htm
http://fr.openclassrooms.com/informatique/cours/apprenez-a-programmer-en-python/a-la-decouverte-des-modules
http://fr.openclassrooms.com/informatique/cours/apprenez-a-programmer-en-python/a-la-decouverte-des-modules
http://en.wikipedia.org/wiki/Printf

2026/02/01 08:19 21/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Lors de l'exécution, les symboles '%' rencontrés sont remplacés par les variables qui suivent, en
utilisant les spécifications de formatage :

%g : notation décimale ou scientifique compacte
%.2f : notation flottante avec 2 chiffres après le point décimal.

Autres spécifications :

%s : chaîne (string)
%d : entier

Le code “\n” inséré dans une chaîne permet d'effectuer un retour à la ligne.

Depuis Python 2.6, le langage a introduit la méthode .format() qui est plus sophistiquée et ne

présente pas les défauts des techniques utilisant les ”%“ ! (: écrire une page
spécifique).

→ Impressions avec la méthode .print()

 intégrer f-string !: cf.

https://datawhatnow.com/things-you-are-probably-not-using-in-python-3-but-should/ (f-strings
vs format)
Become a Master of String Formatting in Python3 by Maxence LQ, Python in Plain English,
25/05/2021

Références :

documentation Python :
http://docs.python.org/2/library/stdtypes.html#string-formatting-operations
http://python.developpez.com/cours/DiveIntoPython/php/frdiveintopython/native_data_types/for
matting_strings.php
http://stackoverflow.com/questions/5082452/python-string-formatting-vs-format
http://www.python-course.eu/python3_formatted_output.php
Print() in Python - A guide to printing and formatting your scripts output Keno Leon, Medium,
Feb 8, 2020

Lire et écrire dans des fichiers

L'instruction

 f = open(filename, mode)

permet de traiter un fichier du système d'exploitation “filename”, avec un “mode” pouvant prendre
différentes valeurs :

“r” : en lecture seule
“w” : en écriture
“a” : en écriture, mais au delà de ce qui existe déjà (append)

https://dvillers.umons.ac.be/wiki/teaching:progappchim:print_format
https://datawhatnow.com/things-you-are-probably-not-using-in-python-3-but-should/
https://python.plainenglish.io/become-a-master-of-string-formatting-in-python3-252334a8269a
http://docs.python.org/2/library/stdtypes.html#string-formatting-operations
http://python.developpez.com/cours/DiveIntoPython/php/frdiveintopython/native_data_types/formatting_strings.php
http://python.developpez.com/cours/DiveIntoPython/php/frdiveintopython/native_data_types/formatting_strings.php
http://stackoverflow.com/questions/5082452/python-string-formatting-vs-format
http://www.python-course.eu/python3_formatted_output.php
https://k3no.medium.com/print-in-python-389aea412c1f

Last
update:
2022/05/09
13:31

teaching:progappchim:notions_fondamentales https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 08:19

Une fois le fichier ouvert, l'instruction “data = f.read()” lit l'entièreté du fichier et la stocke dans la
variable de caractères data. “f.readline()” effectue la lecture d'une ligne à la fois. En écriture, le
contenu d'une chaîne de caractère “dataw” est écrite dans le fichier par l'instruction “f.write(dataw)”.

Une fois l'utilisation achevée du fichier, il est important de fermer le fichier par la commande
“f.close()” des erreurs peuvent subvenir sur le système de fichier si ce n'est pas fait correctement
pour les fichiers en écriture surtout.

Il est recommandé d'ouvrir le fichier en utilisant la commande “with”, qui garantit la
fermeture du fichier après exécution du code indenté, même en cas d'erreur :

with open("fichier.txt", "r") as fic:
 contenu_fic = fic.read()

Les données de tout type devant être transformées en chaînes de caractères, il n'est
pas aisé de stocker dans des fichiers des données composites comprenant des entiers,
listes, dictionnaires,… Dans ce cas, une des solutions les plus simples consiste à
utiliser le module json codant et décodant les données dans le format répandu JSON.

Références

Pour en savoir plus, consultez la page
https://docs.python.org/2/tutorial/inputoutput.html#reading-and-writing-files.
A Cheat Sheet on Reading and Writing Files in Python - Quick reference on how to read and
write files Yong Cui, Medium, 13/01/2020
File Handling in Python Yang Zhou, Medium, 25/04/2020
How To Read and Write Files in Python - A beginner’s guide to file I/O Jonathan Hsu, Medium,
Apr 18, 2020

Gestion des erreurs

Try … Except :
https://medium.com/better-programming/how-to-start-using-try-statements-in-python-504
3fe69058d

https://realpython.com/python-keyerror/
…

Gestion de l'encodage des caractères en Python

Le système de codage des caractères a considérablement évolué. Aux débuts de l'informatique, le
codage était initialement limité à l' ASCII sur 7 bits avec 128 caractères possibles, ne permettant

http://fr.wikipedia.org/wiki/JavaScript_Object_Notation
https://docs.python.org/2/tutorial/inputoutput.html#reading-and-writing-files
https://medium.com/better-programming/a-cheat-sheet-on-reading-and-writing-files-in-python-e78297adf413
https://medium.com/better-programming/a-cheat-sheet-on-reading-and-writing-files-in-python-e78297adf413
https://medium.com/techtofreedom/file-handling-in-python-daee4586a64
https://medium.com/code-85/how-to-read-and-write-files-in-python-b2ca7bb2c3f6
https://medium.com/better-programming/how-to-start-using-try-statements-in-python-5043fe69058d
https://medium.com/better-programming/how-to-start-using-try-statements-in-python-5043fe69058d
https://realpython.com/python-keyerror/
https://en.wikipedia.org/wiki/fr:American_Standard_Code_for_Information_Interchange
https://en.wikipedia.org/wiki/fr:American_Standard_Code_for_Information_Interchange

2026/02/01 08:19 23/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

donc d'écrire valablement qu'en anglais, sans caractères spéciaux, sans lettres accentuées. Écrire des
programmes en Python (ou dans d'autres langages) en utilisant exclusivement ces caractères est une
façon simple d'éviter toute difficulté.

Cette limitation a donné lieu à des encodages parfois bricolés, propriétaires et mal conçus pendant
plusieurs décennies, et dont il subsiste encore des traces dans de nombreux logiciels et documents
sauvegardés. Citons pour ce qui concerne l'Europe de l'ouest les encodage cp1252, applemac et
Latin1 (ou iso8859-1). Ces encodages permettent quelques caractères supplémentaires, mais ne sont
pas satisfaisants.

Une solution universelle aux difficultés d'encodage a été de créer une norme définissant les
caractères utilisables au niveau mondial, l'unicode, permettant de décrire des dizaines de milliers de
caractères différents, et d'un encodage efficace pour les usages majoritaires (UTF-8 pour la plupart
des pays utilisant des caractères latins, et UTF-16 pour les autres).

Il est recommandé de spécifier les caractères utilisés pour le codage du programme via une ligne à
placer en début de programme, comme une des suivantes par exemple :

-*- coding: utf-8 -*-
-*- coding: iso-8859-1 -*-
-*- coding: cp1252 -*-
...

Les mots-clés du langage n'utilisent que les caractères du jeu historique ASCII. Un programme Python
peut utiliser des chaînes de caractère utilisant un codage sur plus d'un octet (unicode). Python 3
utilisant des techniques différentes de Python 2 pour cela, et vu l'obsolescence de la branche 2, les
traitements particuliers de codage/décodage ne seront pas explicités.

Références

http://www.pythoncentral.io/python-unicode-encode-decode-strings-python-2x/ (2013)
Unicode in Python: Working With Character Encodings (9 Lessons), Real Python, Christopher
Trudeau (2020)

La complexité algorithmique

Un algorithme est l'énoncé dans un langage bien défini d'une suite d'opérations permettant de
résoudre par calcul un problème. Cette résolution nécessite lors de son implémentation un certain
temps de calcul, une certaine quantité de mémoire. La dépendance de ces quantités en le(s)
paramètre(s) qui régissent la taille d'un problème constitue la complexité algorithmique, en temps ou
en mémoire. Si des problèmes à résoudre traitent un grand nombre de donnée, ou sont répétés très
souvent, Il est particulièrement important de sélectionner une méthode de résolution, un algorithme,
de la meilleure complexité possible.

Voici quelques complexités classiques et quelques exemples d'application :

https://en.wikipedia.org/wiki/fr:Windows-1252
https://en.wikipedia.org/wiki/fr:Windows-1252
https://en.wikipedia.org/wiki/fr:Latin1
https://en.wikipedia.org/wiki/fr:Latin1
https://en.wikipedia.org/wiki/fr:Utf-8
https://en.wikipedia.org/wiki/fr:Utf-8
http://www.pythoncentral.io/python-unicode-encode-decode-strings-python-2x/
https://realpython.com/courses/python-unicode/

Last
update:
2022/05/09
13:31

teaching:progappchim:notions_fondamentales https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 08:19

Ecriture
symbolique Type de complexité Exemples

O(1) complexité indépendante de la
taille de la donnée

O(log(n)) complexité logarithmique
O(n) complexité linéaire Système d'équation tridiagonal

O(nlog(n)) complexité quasi-linéaire
Transformée de Fourier rapide (FFT), utilisée en
spectroscopie et compression de sons (mp3) et
images (jpeg). Tri rapide (quicksort)

O(n2) complexité quadratique
Transformée de Fourier discrète, Tris à bulle,
par insertion ou par sélection Résolution d'un
système d'équation linéaire triangulaire par
substitution.

O(n3) complexité cubique
Système d'équation par méthode de Gauss
(triangularisation) ou Gauss-Jordan
(diagonalisation). Séparation en matrices
triangulaires.

O(np) complexité polynomiale
O(nlog(n)) complexité quasi-polynomiale
O(2n) complexité exponentielle Problème des tours de Hanoï

O(n!) complexité factorielle Calcul d'un déterminant par la méthode des
cofacteurs associés

Jusqu'à la complexité polynomiale, les algorithmes peuvent être qualifiés d'efficaces.

Les stratégies mises en oeuvre pour créer des algorithmes incluent :

les itérations (répétitions n fois d'un bloc d'instructions)
la récursivité. Un problème de taille n se ramène à traiter un ou plusieurs problèmes de taille
(n-1).
Diviser pour régner (divide and conquer). Un problème de taille n est décomposé en plusieurs
problèmes, par exemple 2 de taille n/2.

Les données manipulées peuvent s'organiser en listes, piles, files, queues, listes chaînées, arbres
(avec feuilles, noeud, branches,…), tandis que les algorithmes utilisent des relations logiques, une
grammaire, des structures, des quantificateurs,…

Références : http://fr.wikipedia.org/wiki/Théorie_de_la_complexité_des_algorithmes

Introspection

Un programme Python peut s'examiner lui-même :

test-introspection.py

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""

http://fr.wikipedia.org/wiki/Théorie_de_la_complexité_des_algorithmes
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:notions_fondamentales?codeblock=34

2026/02/01 08:19 25/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Chaîne de caractère multiligne mise en commentaire pour décrire un
programme.
2ème ligne
3ème ligne
fin de la documentation
"""

print("Exemple de chaîne imprimée dans le programme")

print(__name__)

print(__name__.__doc__)

print(__doc__)

Lignes directrices pour l'écriture de code Python

Résumé des principales recommandations de la pep8

Les règles étant faites pour ne pas être respectées systématiquement. Surtout si leur
respect pose un problème de compatibilité,…

Espaces

Entourer les opérateurs d'espaces, sauf pour des groupements mathématiques et dans les
arguments/paramètres de fonctions, et pas à l’intérieur de parenthèses, crochets ou accolades.
Exemples :

variable = 'valeur de variable'
if a == b:
6 / 3
d = a*x + b
f = (1+x) * (1-x)
def fonction(arg='val'):
[x**2 for x in range(20)]

Retours à la ligne

limiter les lignes à 79 caractères (utiliser les retours à la ligne, l'indentation, le backslash \)
Séparer par des lignes vides les fonctions (2), classes (2) et méthodes (1)
Utiliser une ligne par directive d'importation

https://www.python.org/dev/peps/pep-0008/

Last
update:
2022/05/09
13:31

teaching:progappchim:notions_fondamentales https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 08:19

caractères

indentation par 4 espaces (pas de tabulation !)
encodage en utf-8, à mentionner via # -*- coding: utf-8 -*-
Utiliser des triples “quotes” ”“” pour des doctrings (commentaires en début de fonction,
classe,…)

Noms de variable

boucle, indices : utiliser un seul caractère minuscule
utiliser uniquement des minuscules et le caractère de soulignement (underscore “_”) pour les
modules, variables, fonctions et méthodes
Pour les “constantes” : majuscules et underscore
Noms de classe en CamelCase

Assignation, copie, "is", "id"...

 expliquer un peu le fonctionnement du langage et comment les objets sont
représentés en interne. + notion mutable/immutable,…

comparaison == et is ?
Shallow Copy vs Deep Copy vs Assignment in Python
…

Outils de vérification automatique

pycodestyle
pyflakes

Référence :

Code Style Checks in Python

Conseils divers

10 Python Tips For Better Code (Abhay Parashar, Medium, 17/12/2020)
3 Tips For Writing Pythonic Code David Amos, Medium, 17/03/2022

From:
https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:
https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

Last update: 2022/05/09 13:31

https://en.wikipedia.org/wiki/fr:CamelCase
https://en.wikipedia.org/wiki/fr:CamelCase
https://medium.com/analytics-vidhya/shallow-copy-vs-deep-copy-vs-assignment-in-python-921d7e413a3a
https://pycodestyle.readthedocs.io/en/latest/
https://github.com/PyCQA/pyflakes
https://julien.danjou.info/code-style-checks-in-python/
https://levelup.gitconnected.com/10-python-tips-for-better-code-1bbffde3b44d
https://somacdivad.medium.com/3-tips-for-writing-pythonic-code-b090956a6107
https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/teaching:progappchim:notions_fondamentales?rev=1652095897

2026/02/01 08:19 27/27 Notions fondamentales

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

	Notions fondamentales
	Règles de base
	Scripts ou programmes Python, où les conserver, et comment les nommer :

	Structures conditionnelles et répétitives
	Sélection ou instruction conditionnelle
	Structures répétitives

	Principaux types de données
	Les types de données numériques principaux :
	Le type de données texte ou "string" :
	Constantes
	Modifications, recherches, index, vérifications,...
	Applications à la détection de palindromes, anagrammes et pangrammes
	Chaînes préfixées
	Références

	Les séquences binaires
	Les booléens (vrai ou faux)
	Les listes
	Références

	Les tuples
	Les dictionnaires
	Références diverses

	Les ensembles
	D'autres types

	Fonctions prédéfinies
	Veracité/fausseté d'une expression
	Modules turtle et xturtle

	Fonctions originales
	Variables locales et globales
	Passage d'arguments par tuples et dictionnaires
	Passage par tuple
	Passage par dictionnaire

	Modules de fonctions
	Exemples de modules de déclarations de variables
	Directive d'importation
	Test sur le programme "main"
	Espaces de noms (namespaces)

	Impression formatée de texte et nombres (print)
	Lire et écrire dans des fichiers
	Références

	Gestion des erreurs
	Gestion de l'encodage des caractères en Python
	Références

	La complexité algorithmique
	Introspection
	Lignes directrices pour l'écriture de code Python
	Espaces
	Retours à la ligne
	caractères
	Noms de variable
	Assignation, copie, "is", "id"...
	Outils de vérification automatique
	Conseils divers

