Outils pour utilisateurs

Outils du site


teaching:progappchim:matplotlib_gallery:potentiel_energy_surface

Ceci est une ancienne révision du document !


Surface d'énergie potentielle

Historique

Eyring et Polanyi ont publié en 1931 l'article On Simple Gas Reactions dans lequel ils décrivent les trajets des atomes dans la réaction H2 + H –> H + H2 (échange d'atomes). Ces travaux aboutiront au développement des notions de complexe activé (activated complex) ou état de transition (transition state).

Représentation graphique

L'article “On a New Method of Drawing the Potential Energy Surface” (Shin Sato, J. Chem. Phys. 23, 592, 1955) présente une simplification relativement facile à mettre en oeuvre dans le cas où les 3 atomes d'hydrogène sont alignés.

Des expression analytiques sont proposées pour un état d'énergie liant et un état d'énergie non-liant :

  • $E_{bond}= D_e [\exp(-2\beta(r-r_e))-2\exp(-\beta(r-r_e))]$
  • $E_{ant}= \frac{D_e}{2} [\exp(-2\beta(r-r_e))+2\exp(-\beta(r-r_e))]$

$r_e$ est la distance interatomique d'équilibre de H2, $D_e$ la profondeur du puits de potentiel et $\beta$ un paramètre pour ajuster sa largeur (voir le Potentiel de Morse, et l'approximation harmonique).

Pour 2 atomes d'hydrogène A et B, une approximation est :

  • $E_{bond}= \frac{Q_{AB}+\alpha_{AB}}{1+S^2_{AB}} = \frac{Q_{AB}+\alpha_{AB}}{1+k}$
  • $E_{ant}= \frac{Q_{AB}-\alpha_{AB}}{1-S^2_{AB}} = \frac{Q_{AB}-\alpha_{AB}}{1-k}$

$k=S^2_{AB}$ et $Q_{AB}$, $\alpha_{AB}$ et $S_{AB}$ sont respectivement les intégrales de coulomb, d'échange et de recouvrement, toutes fonctions de la distance $r_{AB}$ entre les atomes A et B.

La solution proposée par Sato pour 3 atomes A, B, C, avec l'hypothèse $S^2_{AB}=S^2_{BC}=S^2_{CA}=k$ est :

  • $E = \frac{1}{1+k} \{ Q_{AB} + Q_{BC} + Q_{CA} - \sqrt{\frac{2}{1}[(\alpha_{AB} - \alpha_{BC})^2 + (\alpha_{BC} - \alpha_{CA})^2 + (\alpha_{CA} - \alpha_{AB})^2 ]} \}$

On obtient facilement $Q_{AB}$ et $\alpha_{AB}$ :

  • $Q_{AB} = ((1+k)E_{bond} + (1-k)E_{ant}) / 2$
  • $\alpha_{AB} = ((1+k)E_{bond} - (1-k)E_{ant}) / 2$

Sato présente des PES avec l'hypothèse k = 0.18 pour des distances jusque 0.5 nm.

Programme

Sorties graphiques

Lignes de contour

Références

Ce site web utilise des cookies pour analyser le trafic de visites. En restant sur ce site, vous acceptez le stockage de cookies sur votre ordinateur. En savoir plus
teaching/progappchim/matplotlib_gallery/potentiel_energy_surface.1431075703.txt.gz · Dernière modification: 2015/05/08 11:01 par villersd