teaching:progappchim:lennard-jones

Ceci est une ancienne révision du document !


Représentation du potentiel de Lennard-Jones

L'utilisation de fonctions en python permet de nombreuses applications par la création de graphiques. En utilisant la “bibliothèque matplotlib/pylab”, vous pourrez donc aisément créer des graphes de fonction.

Exemple du potentiel de Lennard-Jones de l'argon :

$V_{LJ} = 4\varepsilon \left[ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right] = \varepsilon \left[ \left(\frac{r_{m}}{r}\right)^{12} - 2\left(\frac{r_{m}}{r}\right)^{6} \right]$

où σ est la distance à laquelle le potentiel entre les particules s'annule et ε est l'énergie du puits de potentiel d'interaction. La distance rm à laquelle le potentiel a cette valeur minimale (pour une interaction entre seulement deux atomes) est reliée à σ par la relation suivante : $r_{m} = 2^{1/6} \sigma$

<sxh python; title : Lennard-Jones-01.py> #! /usr/bin/env python # -*- coding: utf-8 -*- “”“ Représentation du potentiel de Lennard-Jones Argon : σ = 3.405 Å, ε/kB = 118.2 K kB = 1.3806488(13)×10−23 –> ε = 1.632 10-21 J ”“” from pylab import * def f®: sigma=3.405 #angstrom ! epsilon=1.632 # 10-21 J

  s = (sigma/r)**6
  s2= 4.*epsilon* (s**2. - s)
  return s2

r=[] u=[] x=3. while x < 10:

  r.append(x)
  u.append(f(x))
  x=x+0.1

plot(r, u) show() </sxh>

Suggestion : récrire ce programme en utilisant des directives d'importation standard des librairies Matplotlib/NumPy

À basse température, les gaz rares peuvent donner des cristaux de structure cubique à face centrée ou hexagonale compacte. La phase cubique centrée peut également être investiguée. Dans chaque de ces structures, chaque atome possède alors d'autres atomes dans son voisinage immédiat (la coordination 12 ou 8), mais aussi au delà. Pour caractériser l'énergie de cohésion et relier le paramètre du réseau cristallin à σ, il faut considérer la somme de toutes ces interactions, ou du moins de celles correspondant à un voisinage suffisant pour converger. En sommant pour N atomes, on obtient :

$U_{tot} = \frac{1}{2} N (4\epsilon) \left[ \sum_j \left( \frac{\sigma} {p_j R}\right)^{12} - \sum_j \left( \frac{\sigma} {p_j r}\right)^{6} \right]$

où R est la distance de séparation entre plus proches voisins et $p_j$ représente les distances non dimensionnelles (réduites par rapport à R) entre les paires possibles d'atomes par rapport à l'atome de référence.

La distance d'équilibre $R_0$ pourra être obtenue facilement en minimisant $U_tot$. Cela nécessite de calculer pour le réseau envisagé les valeurs de $\sum_j p_j^{-12}$ et $\sum_j p_j^{-6}$.

Ce site web utilise des cookies. En utilisant le site Web, vous acceptez le stockage de cookies sur votre ordinateur. Vous reconnaissez également que vous avez lu et compris notre politique de confidentialité. Si vous n'êtes pas d'accord, quittez le site.En savoir plus
  • teaching/progappchim/lennard-jones.1425550091.txt.gz
  • Dernière modification : 2015/03/05 11:08
  • de villersd