
2026/01/23 17:58 1/5 Jeu de la vie de Conway

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Jeu de la vie de Conway

<sxh python; title : Conway_Game_of_Life_2D-JK-2012.py> #!/usr/bin/env python # -*- coding: utf-8 -
*- “”“A minimal implementation of Conway's Game of Life.

source : http://www.exolete.com/code/life modified by par Jérémie Knoops, BA2 chimie UMONS,
2011-2012 cf. http://fr.wikipedia.org/wiki/Jeu_de_la_vie &
http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life Each cell's survival depends on the number of
occupied nearest and next-nearest neighbours (calculated in Grid::step). A living cell dies of
overcrowding or loneliness if it has more than three or fewer than two neighbours; a dead cell is
brought to life if it has exactly three neighbours (determined in Cell::setNextState).

 Iain Haslam, June 2005.

”“” from Tkinter import * import time

#

Definition des cellules

class Cell(Label):

 DEAD = 0
 LIVE = 1

 def __init__(self,parent):
 Label.__init__(self,parent,relief="raised",width=2,borderwidth=1)
 self.bind("<Button-1>", self.toggle)
 self.displayState(Cell.DEAD)

 def toggle(self,event):
 self.displayState(1-self.state)

 def setNextState(self,numNeighbours):
 """Work out whether this cell will be alive at the next iteration."""
 if self.state==Cell.LIVE and \
 (numNeighbours>3 or numNeighbours<2):
 self.nextState = Cell.DEAD
 elif self.state==Cell.DEAD and numNeighbours==3:
 self.nextState = Cell.LIVE
 else:
 self.nextState = self.state

 def stepToNextState(self):
 self.displayState(self.nextState)

http://www.exolete.com/code/life
http://fr.wikipedia.org/wiki/Jeu_de_la_vie
http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Last
update:
2012/11/30
12:31

teaching:progappchim:game_of_life_conway-2012 https://dvillers.umons.ac.be/wiki/teaching:progappchim:game_of_life_conway-2012?rev=1354275097

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 17:58

 def displayState(self,newstate):
 self.state = newstate
 if self.state==Cell.LIVE:
 self["bg"] = "black"
 else:
 self["bg"] = "white"

#

Definition de la grille

class Grid:

 def __init__(self,parent,sizex,sizey):
 self.sizex = sizex
 self.sizey = sizey
 #numpy.zeros(sizex,sizey) is a better choice,
 #but an additional dependency might be rude...
 self.cells = []
 for a in range(0,self.sizex):
 rowcells = []
 for b in range(0,self.sizey):
 c = Cell(parent)
 c.grid(row=b, column=a)
 rowcells.append(c)
 self.cells.append(rowcells)
 def step(self):
 """Calculate then display the next iteration of the game of life.

This function uses wraparound boundary conditions.

 """
 cells = self.cells
 for x in range(0,self.sizex):
 if x==0: x_down = self.sizex-1
 else: x_down = x-1
 if x==self.sizex-1: x_up = 0
 else: x_up = x+1
 for y in range(0,self.sizey):
 if y==0: y_down = self.sizey-1
 else: y_down = y-1
 if y==self.sizey-1: y_up = 0
 else: y_up = y+1
 sum = cells[x_down][y].state + cells[x_up][y].state + \
 cells[x][y_down].state + cells[x][y_up].state + \
 cells[x_down][y_down].state + cells[x_up][y_up].state + \

2026/01/23 17:58 3/5 Jeu de la vie de Conway

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

 cells[x_down][y_up].state + cells[x_up][y_down].state
 cells[x][y].setNextState(sum)
 for row in cells:
 for Cell in row:
 Cell.stepToNextState()
 print self.calc()
 def clear(self):
 for row in self.cells:
 for Cell in row:
 Cell.displayState(Cell.DEAD)
 def modify(self,Coord):
 self.clear()
 for (x,y) in Coord:
 self.cells[x][y].displayState(Cell.LIVE)

def calc(self):

 n=0
 for row in self.cells:
 for Cell in row:
 if Cell.state==Cell.LIVE:
 n=n+1
 return n
 def multistep(self):
 text1=KBvar1.get()
 try:
 ns=int(text1)
 except ValueError:
 ns = 1
 text2=KBvar2.get()
 try:
 delay=int(text2)
 except ValueError:
 delay = 0
 for a in range(ns):
 time.sleep(delay)
 self.step()
 self.update()

 def update(self):
 for row in self.cells:
 for Cell in row:
 Cell.update_idletasks()

#

Last
update:
2012/11/30
12:31

teaching:progappchim:game_of_life_conway-2012 https://dvillers.umons.ac.be/wiki/teaching:progappchim:game_of_life_conway-2012?rev=1354275097

https://dvillers.umons.ac.be/wiki/ Printed on 2026/01/23 17:58

Programme principal

root = Tk() if name == “main”:

Figures=[("Blinker",((0,1),(1,1),(2,1))),("Glider",((0,2),(1,0),(2,1),(1,2),
(2,2))),("R-Pentomino",((0,1),(1,0),(1,1),(1,2),(2,0)))]
 upframe = Frame(root)
 upframe.grid(row=0,column=0)
 middleFrame =Frame(root)
 middleFrame.grid(row=1,column=0)
 bottomFrame= Frame(root)
 bottomFrame.grid(row=2,column=0)
 gr = Grid(upframe,30,30)
 for i,fig in enumerate(Figures):
 Button(middleFrame,
 text=fig[0],
 command=lambda toto=fig:
 gr.modify(toto[1])). \
 grid(row=i,column=0)

 ###ajout
 textlab1=Label(middleFrame, text='Number of steps:', width=15, height=2,
fg="black")
 textlab1.grid(row=0,column=1)
 KBvar1=StringVar()
 KB1=Entry(middleFrame,textvariable=KBvar1,width=5)
 KB1.grid(row=0,column=2)
 textlab2=Label(middleFrame, text='Delay(sec):', width=15, height=2,
fg="black")
 textlab2.grid(row=1,column=1)
 KBvar2=StringVar()
 KB2=Entry(middleFrame,textvariable=KBvar2,width=5)
 KB2.grid(row=1,column=2)
 ###
 buttonStep = Button(bottomFrame,text="Step",command=gr.multistep)
 buttonStep.grid(row=1,column=1)
 buttonCalc = Button(bottomFrame,text="Calculate",command=gr.calc)
 buttonCalc.grid(row=1,column=2)
 buttonClear = Button(bottomFrame,text="Clear",command=gr.clear)
 buttonClear.grid(row=1,column=3)
 buttonQuit = Button(bottomFrame,text="Quit",command=root.destroy)
 buttonQuit.grid(row=1,column=4)

 root.mainloop()

</sxh>

2026/01/23 17:58 5/5 Jeu de la vie de Conway

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Références

http://www.exolete.com/code/life
http://fr.wikipedia.org/wiki/Jeu_de_la_vie
http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

From:
https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:
https://dvillers.umons.ac.be/wiki/teaching:progappchim:game_of_life_conway-2012?rev=1354275097

Last update: 2012/11/30 12:31

http://www.exolete.com/code/life
http://fr.wikipedia.org/wiki/Jeu_de_la_vie
http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/teaching:progappchim:game_of_life_conway-2012?rev=1354275097

	Jeu de la vie de Conway
	Definition des cellules
	Definition de la grille
	Programme principal
	Références

