
2026/02/01 07:03 1/8 Algorithmes sur entiers

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Algorithmes sur entiers

La manipulation d'entiers fait l'objet de nombreuses applications en chimie, du fait que
les  atomes (et  isotopes)  comptent  des nombres entiers  de nucléons (nombre de
masse), que les molécules (ou ions, complexes) sont constituées d'atomes individuels
(cf. formules brutes, indices), que les stœchimétries des réactions impliquent le plus
souvent des entiers, que des structures (hélices, cristaux,…) sont caractérisées par
des rapports entiers,…

Cette page reprend quelques grands algorithmes classiques sur les nombres entiers, et introduit
quelques algorithmes ayant des applications en chimie.

Recherche du PGCD (plus grand commun diviseur)

Explication géométrique : en comprenant un nombre entier comme une longueur et un couple
d'entiers (a,b) comme un rectangle, leur PGCD est la longueur du côté du plus grand carré permettant
de carreler entièrement ce rectangle. L'algorithme d'Euclide décompose ce rectangle en carrés, de
plus en plus petits, par divisions euclidiennes successives, de la longueur par la largeur, puis de la
largeur par le reste, jusqu'à un reste nul (observez bien ici !). Cela donne ceci en Python :

pgcd.py

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
def gcd(a, b):
    """Calculate the Greatest Common Divisor of a and b.
 
    Unless b==0, the result will have the same sign as b (so that when
    b is divided by it, the result comes out positive).
    """
    while b:
        a, b = b, a%b
    return a
 
n1=210
n2=126
print(gcd(n1, n2))

Si on dispose des décompositions en facteurs premiers d'un nombre entier, on peut aussi établir la
valeur du PGCD en effectuant le produit de tous les facteurs communs.

Références

http://fr.wikipedia.org/wiki/Algorithme_d%27Euclide#Explications_g.C3.A9om.C3.A9triques
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:algos_entiers?codeblock=0


Last update:
2023/01/10
09:00

teaching:progappchim:algos_entiers https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1673337624

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 07:03

Algorithme d'Euclide
http://stackoverflow.com/questions/11175131/code-for-greatest-common-divisor-in-python
https://docs.python.org/dev/library/fractions.html#fractions.gcd (version incluse dans le
langage)
http://en.literateprograms.org/Euclidean_algorithm_%28Python%29 (améliorable !)

Nombres premiers

Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et
positifs (qui sont alors 1 et lui-même) : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, …

Pour lister les nombres premiers strictement inférieur à un nombre N donné, un algorithme naïf
(appelés tests de primalité) consiste à considérer les naturels un par un, en essayant de le diviser par
tous les nombres inférieurs à sa racine carrée : s'il est divisible par l'un d'entre eux, il est composé, et
sinon, il est premier. Voici une implémentation en Python de cette idée.

nombres_premiers-01.py

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
Liste de nombres premiers strictement inférieurs à un entier donné
"""
def isprime(n):
    for x in range(2,int(n**0.5)+1):
        if n % x == 0:
            return False
    return True
 
def primelist(n):
    return [a for a in range(2,n) if isprime(a)]
 
p=primelist(1000)
print(p)

L'algorithme peut être rendu plus efficace : il suggère beaucoup de divisions inutiles, par exemple, si
un nombre n'est pas divisible par 2, il est inutile de tester s'il est divisible par 4. En fait, il suffit de
tester sa divisibilité par tous les nombres premiers inférieurs à sa racine carrée. Le crible
d'Ératosthène est une méthode, reposant sur cette idée, qui permet de trouver tous les nombres
premiers inférieurs à un certain entier naturel donné N. En supprimant tous les multiples, à la fin il ne
restera que les entiers qui ne sont multiples d'aucun entier, et qui sont donc les nombres premiers.
Voici une implémentation en Python du crible d'Ératosthène :

nombres_premiers-03.py

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

http://fr.wikipedia.org/wiki/Algorithme_d%27Euclide
http://stackoverflow.com/questions/11175131/code-for-greatest-common-divisor-in-python
https://docs.python.org/dev/library/fractions.html#fractions.gcd
http://en.literateprograms.org/Euclidean_algorithm_%28Python%29
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:algos_entiers?codeblock=1
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:algos_entiers?codeblock=2


2026/02/01 07:03 3/8 Algorithmes sur entiers

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

"""
Liste de nombres premiers strictement inférieurs à un entier donné
"""
def primelist(n):
    """
    Version avec crible d'Eratosthenes
    """
    li = range(n+1)  # création d'une liste d'entiers jusque n
    li[1] = 0        #  0 (déjà à 0) et 1 ne sont pas premiers
    ncur = 2            # prochain nombre à tester
    while ncur ** 2 <= n:  # tant que ncur est inférieur à sqrt(n)
        li[ncur*2::ncur] = [0] * (n // ncur - 1) # éliminer (mettre à
0)
                                          # les multiples de ncur
        # ncur suivant (il ne doit pas être déjà mis à zéro)
        ncur += 1
        while not li[ncur]:
            ncur += 1
    return [a for a in li if a != 0]  # renvoie une liste avec les
élements non nuls
 
p=primelist(1000)
print(p)

Références

Nombre premier (wikipedia)
Crible d'Ératosthène (wikipedia)
https://www.daniweb.com/software-development/python/code/216880/check-if-a-number-is-a-pr
ime-number-python
http://python.jpvweb.com/mesrecettespython/doku.php?id=liste_des_nombres_premiers
http://fr.wikibooks.org/wiki/Exemples_de_scripts_Python#Impl.C3.A9mentation_du_crible_d.27.C
3.89ratosth.C3.A8ne
http://stackoverflow.com/questions/3939660/sieve-of-eratosthenes-finding-primes-python
http://openclassrooms.com/forum/sujet/crible-d-eratosthene-87347
Explication de l'affectation multiple via des slices

Nombre premier tronquable
https://www.geeksforgeeks.org/left-truncatable-prime/
https://rosettacode.org/wiki/Find_largest_left_truncatable_prime_in_a_given_base#Python
https://tutorialspoint.dev/algorithm/mathematical-algorithms/left-truncatable-prime

Factorisation en nombres premiers

Version élémentaires, par essais systématiques de diviseurs :

title : factorisation_nombres_premiers-01.py

http://fr.wikipedia.org/wiki/Nombre_premier
http://fr.wikipedia.org/wiki/Crible_d%27%C3%89ratosth%C3%A8ne
https://www.daniweb.com/software-development/python/code/216880/check-if-a-number-is-a-prime-number-python
https://www.daniweb.com/software-development/python/code/216880/check-if-a-number-is-a-prime-number-python
http://python.jpvweb.com/mesrecettespython/doku.php?id=liste_des_nombres_premiers
http://fr.wikibooks.org/wiki/Exemples_de_scripts_Python#Impl.C3.A9mentation_du_crible_d.27.C3.89ratosth.C3.A8ne
http://fr.wikibooks.org/wiki/Exemples_de_scripts_Python#Impl.C3.A9mentation_du_crible_d.27.C3.89ratosth.C3.A8ne
http://stackoverflow.com/questions/3939660/sieve-of-eratosthenes-finding-primes-python
http://openclassrooms.com/forum/sujet/crible-d-eratosthene-87347
http://gumuz.nl/weblog/python-extended-slice-assignment/
https://en.wikipedia.org/wiki/fr:Nombre_premier_tronquable
https://en.wikipedia.org/wiki/fr:Nombre_premier_tronquable
https://www.geeksforgeeks.org/left-truncatable-prime/
https://rosettacode.org/wiki/Find_largest_left_truncatable_prime_in_a_given_base#Python
https://tutorialspoint.dev/algorithm/mathematical-algorithms/left-truncatable-prime
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:algos_entiers?codeblock=3


Last update:
2023/01/10
09:00

teaching:progappchim:algos_entiers https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1673337624

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 07:03

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
Factorisation en nombres premiers ; méthode par essais successifs
"""
 
def prime_factors(n):
    li = []
    f = 2  # premier facteur à tester
    while f*f <= n:
        while (n % f) == 0:
            li.append(f)  # on ajoute f à la liste
            n = n/f           # on divise par f
        f = f+1 if f == 2 else f+2  # pour ne pas essayer les nombres
pairs
    if n > 1:  # si on n'a pas obtenu n=1, alors le facteur restant est
premier
       li.append(n)
    return li
 
 
p=prime_factors(1234567890)
print(p)

Exercices :

amélioration la recherche en combinant l'utilisation du crible d'Eratosthenes
utiliser la décomposition en facteurs premiers de deux nombres (ou plus) pour trouver leur
PGCD : pour l'ensemble des facteurs communs aux nombres, il s'agit du produit de ces facteurs
élevés à la puissance la plus basse dans les décompositions

Techniques avancées :

Integer factorization
Fast prime factorization module (stackoverflow)
librairie sympy → pip install sympy (ou conda install sympy)

Use the function sympy.ntheory.factorint : “Given a positive integer n, factorint(n) returns
a dict containing the prime factors of n as keys and their respective multiplicities as
values.” For example:
from sympy.ntheory import factorint
factorint(1020+1) → {73: 1, 5964848081: 1, 1676321: 1, 137: 1} =====
Références ===== *
http://stackoverflow.com/questions/16996217/prime-factorization-list *
http://en.wikipedia.org/wiki/Talk%3APrime_factorization_algorithm (récursif) *
http://rosettacode.org/wiki/Prime_decomposition#Python (avancé) *
http://codereview.stackexchange.com/questions/11317/prime-factorization-of-a-
number (améliorable) *
http://stackoverflow.com/questions/4643647/fast-prime-factorization-module
(intéressant) *

https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Integer_factorization
https://stackoverflow.com/questions/4643647/fast-prime-factorization-module
http://stackoverflow.com/questions/16996217/prime-factorization-list
http://en.wikipedia.org/wiki/Talk%3APrime_factorization_algorithm
http://rosettacode.org/wiki/Prime_decomposition#Python
http://codereview.stackexchange.com/questions/11317/prime-factorization-of-a-number
http://codereview.stackexchange.com/questions/11317/prime-factorization-of-a-number
http://stackoverflow.com/questions/4643647/fast-prime-factorization-module


2026/02/01 07:03 5/8 Algorithmes sur entiers

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

http://gilles.dubois10.free.fr/Nombres/Naturels/decomposition.html *
http://python.jpvweb.com/mesrecettespython/doku.php?id=decomposition_en_f
acteurs_premiers (améliorable) * http://anh.cs.luc.edu/331/code/factoring.py
(intéressant) * http://en.wikipedia.org/wiki/Wheel_factorization * Some code to
for teaching primes (génération de figures pour enseigner les nombres
premiers) ===== Recherche du PPCM ===== Explication de la relation entre
PGCD et PPCM via les facteurs premiers des nombres (cf. wikipedia) : le PPCM
de deux nombres est obtenu par le produit de chacun des facteurs premiers
dans la décomposition des deux nombres, élevés à la puissance la plus haute
dans ces décompositions. On a alors que le produit des deux nombres équivaut
au produit du PGCD par le PPCM et dès lors : PPCM(a,b) = a * b / PGCD(a,b) !
Voici un exemple utilisant les décompositions en facteur premier de 1470 et
252 : ^ Facteurs premiers de 1470 ^ Facteurs premiers de 252^ | 2 | 22 | | 3 | 32|
| 5 | | | 72** | 7 |

Le PGCD est 42, obtenu par le produit des facteurs communs (soulignés), tandis que le PPCM est
obtenu par le produit de tous les facteurs, en utilisant la puissance la plus grande (en gras). Tous les
facteurs du tableau de décomposition, soit de la première colonne, soit de la seconde, sont tous
utilisés. Par conséquent on a bien pour deux nombres a et b que PPCM(a,b) = a * b / PGCD(a,b) !

Problème des apéritifs

Énoncé en version “appliquée” :

La carte des apéritifs propose un certain nombre d’éléments, à des prix différents. Quel
assortiment puis-je acheter, coûtant exactement une certaine somme d’argent N ?

Illustration :

http://gilles.dubois10.free.fr/Nombres/Naturels/decomposition.html
http://python.jpvweb.com/mesrecettespython/doku.php?id=decomposition_en_facteurs_premiers
http://python.jpvweb.com/mesrecettespython/doku.php?id=decomposition_en_facteurs_premiers
http://anh.cs.luc.edu/331/code/factoring.py
http://en.wikipedia.org/wiki/Wheel_factorization
https://github.com/grinsted/teachprimes
https://github.com/grinsted/teachprimes
http://fr.wikipedia.org/wiki/Plus_petit_commun_multiple
https://dvillers.umons.ac.be/wiki/lib/exe/fetch.php?tok=598977&media=http%3A%2F%2Fimgs.xkcd.com%2Fcomics%2Fnp_complete.png


Last update:
2023/01/10
09:00

teaching:progappchim:algos_entiers https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1673337624

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 07:03

En chimie, un problème tout à fait équivalent consiste, en masses entières (donc en nombre de
nucléons), à trouver une formule chimique incluant différents atomes d'éléments différents qui
donnera une masse entière donnée. En voici une solution :

title : aperitif_initial-02.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
http://paternault.fr/informatique/jouets/aperitif.html
https://git.framasoft.org/spalax/jouets/blob/master/README.rst
https://wiki.python.org/moin/Generators
"""
 
def aperitif(total, prix):
    """Solutions du problème des apéritifs.
 
    version sans itérateur
 
    :arg total int: Prix total à atteindre.
    :arg prix list: Liste des prix disponibles.
 
    :return: liste des solutions, ces solutions étant des
             listes correspondant à ``prix``.
    """
 
    if len(prix) == 0:
        return []

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:algos_entiers?codeblock=4


2026/02/01 07:03 7/8 Algorithmes sur entiers

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

    if len(prix) == 1:
        if total % prix[0] == 0:
            return [[int(total // prix[0])]]
    liste=[]
    for nombre in range(int((total // prix[0])+1)):
        for solution in aperitif(total - prix[0]*nombre, prix[1:]):
            liste.append([nombre] + solution)
    return liste
 
atomes=[1,12,14,16,32]
# atomes=atomes[::-1]
masse=59
print(atomes,type(atomes))
print(masse, type(masse))
print(aperitif(masse, atomes))

Références

http://xkcd.com/287/
http://paternault.fr/informatique/jouets/aperitif.html et ici

Applications chimiques

formules CHON(S)
protéines
spectrométrie de masse (en masses entières)

Problème du sac à dos

L’énoncé de ce problème extrêmement difficile (un des problèmes de Karp) est par contre simple,
faisant référence à un problème courant :

Étant donné plusieurs objets possédant chacun un poids et une valeur et étant donné un poids
maximum pour le sac, quels objets faut-il mettre dans le sac de manière à maximiser la valeur
totale sans dépasser le poids maximal autorisé pour le sac ?

En voici une illustration (source wikimedia) :

Ce problème revêt une importance économique dans de nombreux secteurs tels que la découpe de
matériaux (afin de minimiser les pertes) ou le chargement de cargaisons (avions, camions,
bateaux,…). Un examen systématique des possibilités conduit à une explosion combinatoire du
nombre de configurations à examiner !

http://xkcd.com/287/
http://paternault.fr/informatique/jouets/aperitif.html
https://git.framasoft.org/spalax/jouets/blob/master/README.rst
http://fr.wikipedia.org/wiki/21_probl%C3%A8mes_NP-complets_de_Karp
https://dvillers.umons.ac.be/wiki/lib/exe/fetch.php?tok=8c8dfe&media=http%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2Fc%2Fc6%2FKnapsack_greedy.svg%2F500px-Knapsack_greedy.svg.png


Last update:
2023/01/10
09:00

teaching:progappchim:algos_entiers https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1673337624

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 07:03

Solutions en Python :

Rosetta code, en force brute et programmation dynamique
codereview.stackexchange.com, programmation dynamique
http://www.markhneedham.com/blog/2013/01/07/knapsack-problem-python-vs-ruby/
If you have slow loops in Python, you can fix it…until you can’t (knapsack problem)

http://fr.wikipedia.org/wiki/Probl%C3%A8me_du_sac_%C3%A0_dos
https://interstices.info/jcms/c_19213/le-probleme-du-sac-a-dos

Références diverses

http://www.mi.fu-berlin.de/wiki/pub/ABI/QuantProtP4/isotope-distribution.pdf
https://www.biostars.org/p/66772/

From:
https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:
https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1673337624

Last update: 2023/01/10 09:00

http://rosettacode.org/wiki/Knapsack_problem/0-1
http://codereview.stackexchange.com/questions/20569/dynamic-programming-solution-to-knapsack-problem
http://www.markhneedham.com/blog/2013/01/07/knapsack-problem-python-vs-ruby/
https://medium.freecodecamp.org/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35
http://fr.wikipedia.org/wiki/Probl%C3%A8me_du_sac_%C3%A0_dos
https://interstices.info/jcms/c_19213/le-probleme-du-sac-a-dos
http://www.mi.fu-berlin.de/wiki/pub/ABI/QuantProtP4/isotope-distribution.pdf
https://www.biostars.org/p/66772/
https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1673337624

	Algorithmes sur entiers
	Recherche du PGCD (plus grand commun diviseur)
	Références

	Nombres premiers
	Références

	Factorisation en nombres premiers
	Problème des apéritifs
	Références

	Applications chimiques
	Problème du sac à dos
	Références diverses


