2026/02/01 06:51 1/8 Algorithmes sur entiers

Algorithmes sur entiers

La manipulation d'entiers fait I'objet de nombreuses applications en chimie, du fait que
les atomes (et isotopes) comptent des nombres entiers de nucléons (nombre de
masse), que les molécules (ou ions, complexes) sont constituées d'atomes individuels
(cf. formules brutes, indices), que les stoechimétries des réactions impliquent le plus
souvent des entiers, que des structures (hélices, cristaux,...) sont caractérisées par
des rapports entiers,...

Cette page reprend quelques grands algorithmes classiques sur les nombres entiers, et introduit
qguelques algorithmes ayant des applications en chimie.

Recherche du PGCD (plus grand commun diviseur)

Explication géométrique : en comprenant un nombre entier comme une longueur et un couple
d'entiers (a,b) comme un rectangle, leur PGCD est la longueur du c6té du plus grand carré permettant
de carreler entierement ce rectangle. L'algorithme d'Euclide décompose ce rectangle en carrés, de
plus en plus petits, par divisions euclidiennes successives, de la longueur par la largeur, puis de la
largeur par le reste, jusqu'a un reste nul (observez bien ici !). Cela donne ceci en Python :

pgcd.py

#!/usr/bin/env python
-*- coding: UTF-8 -*-
gcd(a, b):
“"""Calculate the Greatest Common Divisor of a and b.

Unless b==0, the result will have the same sign as b (so that when
b is divided by it, the result comes out positive).

b:
a, b b, a%b
a
nl
n2
gcd(nl, n2

Si on dispose des décompositions en facteurs premiers d'un nombre entier, on peut aussi établir la
valeur du PGCD en effectuant le produit de tous les facteurs communs.

Références

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

http://fr.wikipedia.org/wiki/Algorithme_d%27Euclide#Explications_g.C3.A9om.C3.A9triques
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:algos_entiers?codeblock=0

Last update:
2018/11/13 teaching:progappchim:algos_entiers https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1542100774
10:19

Algorithme d'Euclide
http://stackoverflow.com/questions/11175131/code-for-greatest-common-divisor-in-python
https://docs.python.org/dev/library/fractions.html#fractions.gcd (version incluse dans le
langage)

http://en.literateprograms.org/Euclidean_algorithm_%28Python%?29 (améliorable !)

Nombres premiers

Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et
positifs (qui sont alors 1 et lui-méme) : 2, 3,5, 7,11, 13,17, 19, 23, 29, 31, ...

Pour lister les nombres premiers striccement inférieur a un nombre N donné, un algorithme naif
(appelés tests de primalité) consiste a considérer les naturels un par un, en essayant de le diviser par
tous les nombres inférieurs a sa racine carrée : s'il est divisible par I'un d'entre eux, il est composé, et
sinon, il est premier. Voici une implémentation en Python de cette idée.

nombres_premiers-01.py

#!/usr/bin/env python
-*- coding: UTF-8 -*-

Liste de nombres premiers strictement inférieurs a un entier donné

isprime(n
X range (2, int(n** +
n % X :
False
True
primelist(n
a a range n isprime(a

p=primelist
p

L'algorithme peut étre rendu plus efficace : il suggere beaucoup de divisions inutiles, par exemple, si
un nombre n'est pas divisible par 2, il est inutile de tester s'il est divisible par 4. En fait, il suffit de
tester sa divisibilité par tous les nombres premiers inférieurs a sa racine carrée. Le crible
d'Eratosthéne est une méthode, reposant sur cette idée, qui permet de trouver tous les nombres
premiers inférieurs a un certain entier naturel donné N. En supprimant tous les multiples, a la fin il ne
restera que les entiers qui ne sont multiples d'aucun entier, et qui sont donc les nombres premiers.
Voici une implémentation en Python du crible d'Eratosthéne :

nombres_premiers-03.py

#!/usr/bin/env python
-*- coding: UTF-8 -*-

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 06:51

http://fr.wikipedia.org/wiki/Algorithme_d%27Euclide
http://stackoverflow.com/questions/11175131/code-for-greatest-common-divisor-in-python
https://docs.python.org/dev/library/fractions.html#fractions.gcd
http://en.literateprograms.org/Euclidean_algorithm_%28Python%29
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:algos_entiers?codeblock=1
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:algos_entiers?codeblock=2

2026/02/01 06:51 3/8 Algorithmes sur entiers

Liste de nombres premiers strictement inférieurs a un entier donné

primelist(n):

Version avec crible d'Eratosthenes

1i range(n+l) # création d'une liste d'entiers jusque n

li[1l 0 # 0 (déja a 0) et 1 ne sont pas premiers
ncur = 2 # prochain nombre a tester
ncur ** 2 n: # tant que ncur est inférieur a sqrt(n)
li[ncur*2::ncur 0] * (n // ncur - 1) # éliminer (mettre a

0)
les multiples de ncur
ncur suivant (il ne doit pas étre déja mis a zéro)
ncur += 1
lilncur]:
ncur += 1
a a 1i a 0 # renvoie une liste avec les
élements non nuls

p=primelist (1000
P

Références

e Nombre premier (wikipedia)

o Crible d'Eratosthéne (wikipedia)

e https://www.daniweb.com/software-development/python/code/216880/check-if-a-number-is-a-pr
ime-number-python

e http://python.jpvweb.com/mesrecettespython/doku.php?id=liste_des nombres_premiers

e http://fr.wikibooks.org/wiki/Exemples_de_scripts_Python#Impl.C3.A9mentation_du_crible d.27.C
3.89ratosth.C3.A8ne

e http://stackoverflow.com/questions/3939660/sieve-of-eratosthenes-finding-primes-python

e http://openclassrooms.com/forum/sujet/crible-d-eratosthene-87347

e Explication de |'affectation multiple via des slices

Factorisation en nombres premiers

Version élémentaires, par essais systématiques de diviseurs :

title : factorisation_nombres_premiers-01.py

#!/usr/bin/env python
-*- coding: UTF-8 -*-

Factorisation en nombres premiers ; méthode par essais successifs

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

http://fr.wikipedia.org/wiki/Nombre_premier
http://fr.wikipedia.org/wiki/Crible_d%27%C3%89ratosth%C3%A8ne
https://www.daniweb.com/software-development/python/code/216880/check-if-a-number-is-a-prime-number-python
https://www.daniweb.com/software-development/python/code/216880/check-if-a-number-is-a-prime-number-python
http://python.jpvweb.com/mesrecettespython/doku.php?id=liste_des_nombres_premiers
http://fr.wikibooks.org/wiki/Exemples_de_scripts_Python#Impl.C3.A9mentation_du_crible_d.27.C3.89ratosth.C3.A8ne
http://fr.wikibooks.org/wiki/Exemples_de_scripts_Python#Impl.C3.A9mentation_du_crible_d.27.C3.89ratosth.C3.A8ne
http://stackoverflow.com/questions/3939660/sieve-of-eratosthenes-finding-primes-python
http://openclassrooms.com/forum/sujet/crible-d-eratosthene-87347
http://gumuz.nl/weblog/python-extended-slice-assignment/
https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:algos_entiers?codeblock=3

Last update:
2018/11/13 teaching:progappchim:algos_entiers https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1542100774
10:19

prime factors(n

11
f # premier facteur a tester
f*f n:
nsf :
li.append(f) # on ajoute f a la liste
n n/f # on divise par f
f f+ f f+2 # pour ne pas essayer les nombres
pairs
n : # si1 on n'a pas obtenu n=1, alors le facteur restant est
premier
1i.append(n
1i

p=prime_factors
p

Exercices :

e amélioration la recherche en combinant I'utilisation du crible d'Eratosthenes

« utiliser la décomposition en facteurs premiers de deux nombres (ou plus) pour trouver leur
PGCD : pour I'ensemble des facteurs communs aux nombres, il s'agit du produit de ces facteurs
élevés a la puissance la plus basse dans les décompositions

Références

e http://stackoverflow.com/questions/16996217/prime-factorization-list

e http://en.wikipedia.org/wiki/Talk%3APrime_factorization_algorithm (récursif)

e http://rosettacode.org/wiki/Prime_decomposition#Python (avancé)

e http://codereview.stackexchange.com/questions/11317/prime-factorization-of-a-number
(améliorable)

* http://stackoverflow.com/questions/4643647/fast-prime-factorization-module (intéressant)

e http://qgilles.dubois10.free.fr/Nombres/Naturels/decomposition.html

* http://python.jpvweb.com/mesrecettespython/doku.php?id=decomposition_en_facteurs premier
s (améliorable)

e http://anh.cs.luc.edu/331/code/factoring.py (intéressant)

e http://en.wikipedia.org/wiki/Wheel_factorization

Recherche du PPCM

Explication de la relation entre PGCD et PPCM via les facteurs premiers des nombres (cf. wikipedia) :
le PPCM de deux nombres est obtenu par le produit de chacun des facteurs premiers dans la
décomposition des deux nombres, élevés a la puissance la plus haute dans ces décompositions. On a

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 06:51

http://stackoverflow.com/questions/16996217/prime-factorization-list
http://en.wikipedia.org/wiki/Talk%3APrime_factorization_algorithm
http://rosettacode.org/wiki/Prime_decomposition#Python
http://codereview.stackexchange.com/questions/11317/prime-factorization-of-a-number
http://stackoverflow.com/questions/4643647/fast-prime-factorization-module
http://gilles.dubois10.free.fr/Nombres/Naturels/decomposition.html
http://python.jpvweb.com/mesrecettespython/doku.php?id=decomposition_en_facteurs_premiers
http://python.jpvweb.com/mesrecettespython/doku.php?id=decomposition_en_facteurs_premiers
http://anh.cs.luc.edu/331/code/factoring.py
http://en.wikipedia.org/wiki/Wheel_factorization
http://fr.wikipedia.org/wiki/Plus_petit_commun_multiple

2026/02/01 06:51 5/8 Algorithmes sur entiers

alors que le produit des deux nombres équivaut au produit du PGCD par le PPCM et des lors :
PPCM(a,b) = a * b/ PGCD(a,b) !

Voici un exemple utilisant les décompositions en facteur premier de 1470 et 252 :

Facteurs premiers de 1470 Facteurs premiers de 252
2 2’

3 3?

5

7? 7

Le PGCD est 42, obtenu par le produit des facteurs communs (soulignés), tandis que le PPCM est
obtenu par le produit de tous les facteurs, en utilisant la puissance la plus grande (en gras). Tous les
facteurs du tableau de décomposition, soit de la premiere colonne, soit de la seconde, sont tous
utilisés. Par conséquent on a bien pour deux nombres a et b que PPCM(a,b) = a * b / PGCD(a,b) !

Probleme des apéritifs
Enoncé en version “appliquée” :

La carte des apéritifs propose un certain nombre d’'éléments, a des prix différents. Quel
assortiment puis-je acheter, colitant exactement une certaine somme d’'argent N ?

[llustration :

MY HOBBY:
EMBEDDING NP-(DMPLETE PROBLEMS IN RESTAURANT ORDERS

«— APPENZERS ——— 1 . EXACTLY? UMK ...
MIXED FRUT 215 HERE, THESE PAPERS ON THE KNAPSACK }
PROBLEM MIGHT HELP YOU OUT.
FRENCH FRIES 275 \ LISTEN, T HAVE 51X OTHER
— A FAST AS POSSIBLE, (F (DURSE. WANT
HOT WINGS 3.55 GOMETHING ON TRAVELING SALESMAN?

MOZZARELLA STICKS Y.20
SAMPLER PLATE 5.80

— SANDWICHES ~—
BACERE/NE L e

\
LE

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

https://dvillers.umons.ac.be/wiki/lib/exe/fetch.php?tok=598977&media=http%3A%2F%2Fimgs.xkcd.com%2Fcomics%2Fnp_complete.png

Last update:
2018/11/13 teaching:progappchim:algos_entiers https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1542100774
10:19

En chimie, un probleme tout a fait équivalent consiste, en masses entieres (donc en nombre de
nucléons), a trouver une formule chimique incluant différents atomes d'éléments différents qui
donnera une masse entiere donnée. En voici une solution :

title : aperitif_initial-02.py

#!/usr/bin/env python

-*- coding: utf-8 -*-
http://paternault.fr/informatique/jouets/aperitif.html
https://git.framasoft.org/spalax/jouets/blob/master/README. rst
https://wiki.python.org/moin/Generators

aperitif(total, prix
"""Solutions du probleme des apéritifs.

version sans itérateur

rarg total int: Prix total a atteindre.
rarg prix list: Liste des prix disponibles.

:return: liste des solutions, ces solutions étant des
listes correspondant a "~ “prix "

len(prix 0:
len(prix 1:
total % prix|[0 0:
int(total // prix|[0
liste
nombre range (int((total // prix(0])+1)):
solution aperitif(total - prix[0]/*nombre, prix|1:
liste.append([nombre| + solution
liste

atomes=[1,12,14,16,32

atomes=atomes[::-1]

masse=59
atomes, type(atomes
masse, type(masse
aperitif(masse, atomes

Références

e http://xkcd.com/287/

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 06:51

https://dvillers.umons.ac.be/wiki/_export/code/teaching:progappchim:algos_entiers?codeblock=4
http://xkcd.com/287/

2026/02/01 06:51 7/8 Algorithmes sur entiers

e http://paternault.fr/informatique/jouets/aperitif.html et ici

Applications chimiques

e formules CHON(S)
e protéines
¢ spectrométrie de masse (en masses entieres)

Probleme du sac a dos

L'énoncé de ce probleme extrémement difficile (un des problémes de Karp) est par contre simple,
faisant référence a un probleme courant :

Etant donné plusieurs objets possédant chacun un poids et une valeur et étant donné un poids
maximum pour le sac, quels objets faut-il mettre dans le sac de maniere a maximiser la valeur
totale sans dépasser le poids maximal autorisé pour le sac ?

En voici une illustration (source wikimedia) :

(]

Ce probleme revét une importance économique dans de nombreux secteurs tels que la découpe de
matériaux (afin de minimiser les pertes) ou le chargement de cargaisons (avions, camions,
bateaux,...). Un examen systématique des possibilités conduit a une explosion combinatoire du
nombre de configurations a examiner !

Solutions en Python :

* Rosetta code, en force brute et programmation dynamique

e codereview.stackexchange.com, programmation dynamique
http://www.markhneedham.com/blog/2013/01/07/knapsack-problem-python-vs-ruby/
If you have slow loops in Python, you can fix it...until you can’t (knapsack problem)

http://fr.wikipedia.org/wiki/Probl%C3%A8me_du_sac_%C3%A0_dos
https://interstices.info/jcms/c_19213/le-probleme-du-sac-a-dos

Références diverses

e http://www.mi.fu-berlin.de/wiki/pub/ABI/QuantProtP4/isotope-distribution.pdf
e https://www.biostars.org/p/66772/

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

http://paternault.fr/informatique/jouets/aperitif.html
https://git.framasoft.org/spalax/jouets/blob/master/README.rst
http://fr.wikipedia.org/wiki/21_probl%C3%A8mes_NP-complets_de_Karp
https://dvillers.umons.ac.be/wiki/lib/exe/fetch.php?tok=8c8dfe&media=http%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2Fc%2Fc6%2FKnapsack_greedy.svg%2F500px-Knapsack_greedy.svg.png
http://rosettacode.org/wiki/Knapsack_problem/0-1
http://codereview.stackexchange.com/questions/20569/dynamic-programming-solution-to-knapsack-problem
http://www.markhneedham.com/blog/2013/01/07/knapsack-problem-python-vs-ruby/
https://medium.freecodecamp.org/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35
http://fr.wikipedia.org/wiki/Probl%C3%A8me_du_sac_%C3%A0_dos
https://interstices.info/jcms/c_19213/le-probleme-du-sac-a-dos
http://www.mi.fu-berlin.de/wiki/pub/ABI/QuantProtP4/isotope-distribution.pdf
https://www.biostars.org/p/66772/

Last update:
2018/11/13 teaching:progappchim:algos_entiers https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1542100774

10:19

From:
https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:
https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1542100774 Y

Last update: 2018/11/13 10:19

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 06:51

https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1542100774

	Algorithmes sur entiers
	Recherche du PGCD (plus grand commun diviseur)
	Références

	Nombres premiers
	Références

	Factorisation en nombres premiers
	Références
	Recherche du PPCM
	Problème des apéritifs
	Références

	Applications chimiques
	Problème du sac à dos
	Références diverses

