
2026/02/01 07:02 1/7 Algorithmes sur entiers

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Algorithmes sur entiers

La manipulation d'entiers fait l'objet de nombreuses applications en chimie, du fait que
les atomes (et isotopes) comptent des nombres entiers de nucléons (nombre de
masse), que les molécules (ou ions, complexes) sont constituées d'atomes individuels
(cf. formules brutes, indices), que les stœchimétries des réactions impliquent le plus
souvent des entiers, que des structures (hélices, cristaux,…) sont caractérisées par
des rapports entiers,…

Cette page reprend quelques grands algorithmes classiques sur les nombres entiers, et introduit
quelques algorithmes ayant des applications en chimie.

Recherche du PGCD (plus grand commun diviseur)

Explication géométrique : en comprenant un nombre entier comme une longueur et un couple
d'entiers (a,b) comme un rectangle, leur PGCD est la longueur du côté du plus grand carré permettant
de carreler entièrement ce rectangle. L'algorithme d'Euclide décompose ce rectangle en carrés, de
plus en plus petits, par divisions euclidiennes successives, de la longueur par la largeur, puis de la
largeur par le reste, jusqu'à un reste nul (observez bien ici !). Cela donne ceci en Python : <sxh
python; title : pgcd.py> #!/usr/bin/env python # -*- coding: UTF-8 -*- def gcd(a, b):

 """Calculate the Greatest Common Divisor of a and b.

 Unless b==0, the result will have the same sign as b (so that when
 b is divided by it, the result comes out positive).
 """
 while b:
 a, b = b, a%b
 return a

n1=210 n2=126 print gcd(n1, n2) </sxh>

Si on dispose des décompositions en facteurs premiers d'un nombre entier, on peut aussi établir la
valeur du PGCD en effectuant le produit de tous les facteurs communs.

Références

Algorithme d'Euclide
http://stackoverflow.com/questions/11175131/code-for-greatest-common-divisor-in-python
https://docs.python.org/dev/library/fractions.html#fractions.gcd (version incluse dans le
langage)
http://en.literateprograms.org/Euclidean_algorithm_%28Python%29 (améliorable !)

http://fr.wikipedia.org/wiki/Algorithme_d%27Euclide#Explications_g.C3.A9om.C3.A9triques
http://fr.wikipedia.org/wiki/Algorithme_d%27Euclide
http://stackoverflow.com/questions/11175131/code-for-greatest-common-divisor-in-python
https://docs.python.org/dev/library/fractions.html#fractions.gcd
http://en.literateprograms.org/Euclidean_algorithm_%28Python%29

Last update:
2015/04/20
10:04

teaching:progappchim:algos_entiers https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1429517070

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 07:02

Nombres premiers

Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et
positifs (qui sont alors 1 et lui-même) : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, …

Pour lister les nombres premiers strictement inférieur à un nombre N donné, un algorithme naïf
(appelés tests de primalité) consiste à considérer les naturels un par un, en essayant de le diviser par
tous les nombres inférieurs à sa racine carrée : s'il est divisible par l'un d'entre eux, il est composé, et
sinon, il est premier. Voici une implémentation en Python de cette idée.

<sxh python; title : nombres_premiers-01.py> #!/usr/bin/env python # -*- coding: UTF-8 -*- “”“ Liste
de nombres premiers strictement inférieurs à un entier donné ”“” def isprime(n):

 for x in range(2,int(n**0.5)+1):
 if n % x == 0:
 return False
 return True

def primelist(n):

 return [a for a in range(2,n) if isprime(a)]

p=primelist(1000) print p </sxh>

L'algorithme peut être rendu plus efficace : il suggère beaucoup de divisions inutiles, par exemple, si
un nombre n'est pas divisible par 2, il est inutile de tester s'il est divisible par 4. En fait, il suffit de
tester sa divisibilité par tous les nombres premiers inférieurs à sa racine carrée. Le crible
d'Ératosthène est une méthode, reposant sur cette idée, qui permet de trouver tous les nombres
premiers inférieurs à un certain entier naturel donné N. En supprimant tous les multiples, à la fin il ne
restera que les entiers qui ne sont multiples d'aucun entier, et qui sont donc les nombres premiers.
Voici une implémentation en Python du crible d'Ératosthène :

<sxh python; title : nombres_premiers-03.py> #!/usr/bin/env python # -*- coding: UTF-8 -*- “”“ Liste
de nombres premiers strictement inférieurs à un entier donné ”“” def primelist(n):

 """
 Version avec crible d'Eratosthenes
 """
 li = range(n+1) # création d'une liste d'entiers jusque n
 li[1] = 0 # 0 (déjà à 0) et 1 ne sont pas premiers
 ncur = 2 # prochain nombre à tester
 while ncur ** 2 <= n: # tant que ncur est inférieur à sqrt(n)
 li[ncur*2::ncur] = [0] * (n // ncur - 1) # éliminer (mettre à 0)
 # les multiples de ncur
 # ncur suivant (il ne doit pas être déjà mis à zéro)
 ncur += 1
 while not li[ncur]:
 ncur += 1
 return [a for a in li if a != 0] # renvoie une liste avec les élements

2026/02/01 07:02 3/7 Algorithmes sur entiers

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

non nuls

p=primelist(1000) print p </sxh>

Références

Nombre premier (wikipedia)
Crible d'Ératosthène (wikipedia)
https://www.daniweb.com/software-development/python/code/216880/check-if-a-number-is-a-pr
ime-number-python
http://python.jpvweb.com/mesrecettespython/doku.php?id=liste_des_nombres_premiers
http://fr.wikibooks.org/wiki/Exemples_de_scripts_Python#Impl.C3.A9mentation_du_crible_d.27.C
3.89ratosth.C3.A8ne
http://stackoverflow.com/questions/3939660/sieve-of-eratosthenes-finding-primes-python
http://openclassrooms.com/forum/sujet/crible-d-eratosthene-87347
Explication de l'affectation multiple via des slices

Factorisation en nombres premiers

Version élémentaires, par essais systématiques de diviseurs :

<sxh python; title : factorisation_nombres_premiers-01.py> #!/usr/bin/env python # -*- coding: UTF-8
-*- “”“ Factorisation en nombres premiers ; méthode par essais successifs ”“”

def prime_factors(n):

 li = []
 f = 2 # premier facteur à tester
 while f*f <= n:
 while (n % f) == 0:
 li.append(f) # on ajoute f à la liste
 n = n/f # on divise par f
 f = f+1 if f == 2 else f+2 # pour ne pas essayer les nombres pairs
 if n > 1: # si on n'a pas obtenu n=1, alors le facteur restant est
premier
 li.append(n)
 return li

p=prime_factors(1234567890) print p </sxh>

Exercices :

amélioration la recherche en combinant l'utilisation du crible d'Eratosthenes
utiliser la décomposition en facteurs premiers de deux nombres (ou plus) pour trouver leur
PGCD : pour l'ensemble des facteurs communs aux nombres, il s'agit du produit de ces facteurs
élevés à la puissance la plus basse dans les décompositions

http://fr.wikipedia.org/wiki/Nombre_premier
http://fr.wikipedia.org/wiki/Crible_d%27%C3%89ratosth%C3%A8ne
https://www.daniweb.com/software-development/python/code/216880/check-if-a-number-is-a-prime-number-python
https://www.daniweb.com/software-development/python/code/216880/check-if-a-number-is-a-prime-number-python
http://python.jpvweb.com/mesrecettespython/doku.php?id=liste_des_nombres_premiers
http://fr.wikibooks.org/wiki/Exemples_de_scripts_Python#Impl.C3.A9mentation_du_crible_d.27.C3.89ratosth.C3.A8ne
http://fr.wikibooks.org/wiki/Exemples_de_scripts_Python#Impl.C3.A9mentation_du_crible_d.27.C3.89ratosth.C3.A8ne
http://stackoverflow.com/questions/3939660/sieve-of-eratosthenes-finding-primes-python
http://openclassrooms.com/forum/sujet/crible-d-eratosthene-87347
http://gumuz.nl/weblog/python-extended-slice-assignment/

Last update:
2015/04/20
10:04

teaching:progappchim:algos_entiers https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1429517070

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 07:02

Références

http://stackoverflow.com/questions/16996217/prime-factorization-list
http://en.wikipedia.org/wiki/Talk%3APrime_factorization_algorithm (récursif)
http://rosettacode.org/wiki/Prime_decomposition#Python (avancé)
http://codereview.stackexchange.com/questions/11317/prime-factorization-of-a-number
(améliorable)
http://stackoverflow.com/questions/4643647/fast-prime-factorization-module (intéressant)
http://gilles.dubois10.free.fr/Nombres/Naturels/decomposition.html
http://python.jpvweb.com/mesrecettespython/doku.php?id=decomposition_en_facteurs_premier
s (améliorable)
http://anh.cs.luc.edu/331/code/factoring.py (intéressant)
http://en.wikipedia.org/wiki/Wheel_factorization

Recherche du PPCM

Explication de la relation entre PGCD et PPCM via les facteurs premiers des nombres (cf. wikipedia) :
le PPCM de deux nombres est obtenu par le produit de chacun des facteurs premiers dans la
décomposition des deux nombres, élevés à la puissance la plus haute dans ces décompositions. On a
alors que le produit des deux nombres équivaut au produit du PGCD par le PPCM et dès lors :
PPCM(a,b) = a * b / PGCD(a,b) !

Voici un exemple utilisant les décompositions en facteur premier de 1470 et 252 :

Facteurs premiers de 1470 Facteurs premiers de 252
2 22

3 32

5
72 7

Le PGCD est 42, obtenu par le produit des facteurs communs (soulignés), tandis que le PPCM est
obtenu par le produit de tous les facteurs, en utilisant la puissance la plus grande (en gras). Tous les
facteurs du tableau de décomposition, soit de la première colonne, soit de la seconde, sont tous
utilisés. Par conséquent on a bien pour deux nombres a et b que PPCM(a,b) = a * b / PGCD(a,b) !

Problème des apéritifs

Énoncé en version “appliquée” :

La carte des apéritifs propose un certain nombre d’éléments, à des prix différents. Quel
assortiment puis-je acheter, coûtant exactement une certaine somme d’argent N ?

Illustration :

http://stackoverflow.com/questions/16996217/prime-factorization-list
http://en.wikipedia.org/wiki/Talk%3APrime_factorization_algorithm
http://rosettacode.org/wiki/Prime_decomposition#Python
http://codereview.stackexchange.com/questions/11317/prime-factorization-of-a-number
http://stackoverflow.com/questions/4643647/fast-prime-factorization-module
http://gilles.dubois10.free.fr/Nombres/Naturels/decomposition.html
http://python.jpvweb.com/mesrecettespython/doku.php?id=decomposition_en_facteurs_premiers
http://python.jpvweb.com/mesrecettespython/doku.php?id=decomposition_en_facteurs_premiers
http://anh.cs.luc.edu/331/code/factoring.py
http://en.wikipedia.org/wiki/Wheel_factorization
http://fr.wikipedia.org/wiki/Plus_petit_commun_multiple
https://dvillers.umons.ac.be/wiki/lib/exe/fetch.php?tok=598977&media=http%3A%2F%2Fimgs.xkcd.com%2Fcomics%2Fnp_complete.png

2026/02/01 07:02 5/7 Algorithmes sur entiers

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

En chimie, un problème tout à fait équivalent consiste, en masses entières (donc en nombre de
nucléons), à trouver une formule chimique incluant différents atomes d'éléments différents qui
donnera une masse entière donnée. En voici une solution :

<sxh python; title : aperitif_initial-02.py> #!/usr/bin/env python # -*- coding: utf-8 -*- “”“
http://paternault.fr/informatique/jouets/aperitif.html
https://git.framasoft.org/spalax/jouets/blob/master/README.rst
https://wiki.python.org/moin/Generators ”“”

def aperitif(total, prix):

 """Solutions du problème des apéritifs.
 version sans itérateur

 :arg total int: Prix total à atteindre.
 :arg prix list: Liste des prix disponibles.

 :return: liste des solutions, ces solutions étant des
 listes correspondant à ``prix``.
 """
 if len(prix) == 0:
 return []
 if len(prix) == 1:
 if total % prix[0] == 0:
 return [[int(total // prix[0])]]
 liste=[]
 for nombre in range(int((total // prix[0])+1)):
 for solution in aperitif(total - prix[0]*nombre, prix[1:]):
 liste.append([nombre] + solution)

http://paternault.fr/informatique/jouets/aperitif.html
https://git.framasoft.org/spalax/jouets/blob/master/README.rst
https://wiki.python.org/moin/Generators

Last update:
2015/04/20
10:04

teaching:progappchim:algos_entiers https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1429517070

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 07:02

 return liste

atomes=[1,12,14,16,32] # atomes=atomes[::-1] masse=59 print atomes,type(atomes) print masse,
type(masse) print aperitif(masse, atomes) </sxh>

Références

http://xkcd.com/287/
http://paternault.fr/informatique/jouets/aperitif.html et ici

Applications chimiques

formules CHON(S)
protéines
spectrométrie de masse (en masses entières)

Problème du sac à dos

L’énoncé de ce problème extrêmement difficile (un des problèmes de Karp) est par contre simple,
faisant référence à un problème courant :

Étant donné plusieurs objets possédant chacun un poids et une valeur et étant donné un poids
maximum pour le sac, quels objets faut-il mettre dans le sac de manière à maximiser la valeur
totale sans dépasser le poids maximal autorisé pour le sac ?

En voici une illustration (source wikimedia) :

Ce problème revêt une importance économique dans de nombreux secteurs tels que la découpe de
matériaux (afin de minimiser les pertes) ou le chargement de cargaisons (avions, camions,
bateaux,…). Un examen systématique des possibilités conduit à une explosion combinatoire du
nombre de configurations à examiner !

Solutions en Python :

Rosetta code, en force brute et programmation dynamique
codereview.stackexchange.com, programmation dynamique
http://www.markhneedham.com/blog/2013/01/07/knapsack-problem-python-vs-ruby/

http://fr.wikipedia.org/wiki/Probl%C3%A8me_du_sac_%C3%A0_dos
https://interstices.info/jcms/c_19213/le-probleme-du-sac-a-dos

http://xkcd.com/287/
http://paternault.fr/informatique/jouets/aperitif.html
https://git.framasoft.org/spalax/jouets/blob/master/README.rst
http://fr.wikipedia.org/wiki/21_probl%C3%A8mes_NP-complets_de_Karp
https://dvillers.umons.ac.be/wiki/lib/exe/fetch.php?tok=8c8dfe&media=http%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2Fc%2Fc6%2FKnapsack_greedy.svg%2F500px-Knapsack_greedy.svg.png
http://rosettacode.org/wiki/Knapsack_problem/0-1
http://codereview.stackexchange.com/questions/20569/dynamic-programming-solution-to-knapsack-problem
http://www.markhneedham.com/blog/2013/01/07/knapsack-problem-python-vs-ruby/
http://fr.wikipedia.org/wiki/Probl%C3%A8me_du_sac_%C3%A0_dos
https://interstices.info/jcms/c_19213/le-probleme-du-sac-a-dos

2026/02/01 07:02 7/7 Algorithmes sur entiers

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Références diverses

http://www.mi.fu-berlin.de/wiki/pub/ABI/QuantProtP4/isotope-distribution.pdf
https://www.biostars.org/p/66772/

From:
https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:
https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1429517070

Last update: 2015/04/20 10:04

http://www.mi.fu-berlin.de/wiki/pub/ABI/QuantProtP4/isotope-distribution.pdf
https://www.biostars.org/p/66772/
https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1429517070

	Algorithmes sur entiers
	Recherche du PGCD (plus grand commun diviseur)
	Références

	Nombres premiers
	Références

	Factorisation en nombres premiers
	Références
	Recherche du PPCM
	Problème des apéritifs
	Références

	Applications chimiques
	Problème du sac à dos
	Références diverses

