2026/02/01 07:02 1/5 Algorithmes sur entiers

Algorithmes sur entiers

La manipulation d'entiers fait I'objet de nombreuses applications en chimie, du fait que
les atomes (et isotopes) comptent des nombres entiers de nucléons (nombre de
masse), que les molécules (ou ions, complexes) sont constituées d'atomes individuels
(cf. formules brutes, indices), que les stoechimétries des réactions impliquent le plus
souvent des entiers, que des structures (hélices, cristaux,...) sont caractérisées par
des rapports entiers,...

Cette page reprend quelques grands algorithmes classiques sur les nombres entiers, et introduit
qguelques algorithmes ayant des applications en chimie.

Recherche du PGCD (plus grand commun diviseur)

Explication géométrique : en comprenant un nombre entier comme une longueur et un couple
d'entiers (a,b) comme un rectangle, leur PGCD est la longueur du c6té du plus grand carré permettant
de carreler entierement ce rectangle. L'algorithme d'Euclide décompose ce rectangle en carrés, de
plus en plus petits, par divisions euclidiennes successives, de la longueur par la largeur, puis de la
largeur par le reste, jusqu'a un reste nul (observez bien ici !). Cela donne ceci en Python : <sxh
python; title : pgcd.py> #!/usr/bin/env python # -*- coding: UTF-8 -*- def gcd(a, b):

"""Calculate the Greatest Common Divisor of a and b.

Unless b==0, the result will have the same sign as b (so that when
b is divided by it, the result comes out positive).

while b:
a, b =0>b, a%b
return a

n1=210 n2=126 print gcd(nl, n2) </sxh>

Si on dispose des décompositions en facteurs premiers d'un nombre entier, on peut aussi établir la
valeur du PGCD en effectuant le produit de tous les facteurs communs.

Références

Algorithme d'Euclide
http://stackoverflow.com/questions/11175131/code-for-greatest-common-divisor-in-python
https://docs.python.org/dev/library/fractions.html#fractions.gcd (version incluse dans le
langage)

http://en.literateprograms.org/Euclidean_algorithm_%28Python%29 (améliorable !)

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

http://fr.wikipedia.org/wiki/Algorithme_d%27Euclide#Explications_g.C3.A9om.C3.A9triques
http://fr.wikipedia.org/wiki/Algorithme_d%27Euclide
http://stackoverflow.com/questions/11175131/code-for-greatest-common-divisor-in-python
https://docs.python.org/dev/library/fractions.html#fractions.gcd
http://en.literateprograms.org/Euclidean_algorithm_%28Python%29

Last update:
2015/04/14 teaching:progappchim:algos_entiers https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1429020265
16:04

Nombres premiers

Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et
positifs (qui sont alors 1 et lui-méme) : 2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, ...

Pour lister les nombres premiers strictement inférieur a un nombre N donné, un algorithme naif
(appelés tests de primalité) consiste a considérer les naturels un par un, en essayant de le diviser par
tous les nombres inférieurs a sa racine carrée : s'il est divisible par I'un d'entre eux, il est composé, et
sinon, il est premier. Voici une implémentation en Python de cette idée.

<sxh python; title : nombres_premiers-01.py> #!/usr/bin/env python # -*- coding: UTF-8 -*- “"“ Liste
de nombres premiers strictement inférieurs a un entier donné "“” def isprime(n):

for x in range(2,int(n**0.5)+1):
if n % x ==
return False
return True

def primelist(n):
return [a for a in range(2,n) if isprime(a)]

p=primelist(1000) print p </sxh>

L'algorithme peut étre rendu plus efficace : il suggere beaucoup de divisions inutiles, par exemple, si
un nombre n'est pas divisible par 2, il est inutile de tester s'il est divisible par 4. En fait, il suffit de
tester sa divisibilité par tous les nombres premiers inférieurs a sa racine carrée. Le crible
d'Eratosthéne est une méthode, reposant sur cette idée, qui permet de trouver tous les nombres
premiers inférieurs a un certain entier naturel donné N. En supprimant tous les multiples, a la fin il ne
restera que les entiers qui ne sont multiples d'aucun entier, et qui sont donc les nombres premiers.
Voici une implémentation en Python du crible d'Eratosthéne :

<sxh python; title : nombres_premiers-03.py> #!/usr/bin/env python # -*- coding: UTF-8 -*- “"“ Liste
de nombres premiers strictement inférieurs a un entier donné "“” def primelist(n):

Version avec crible d'Eratosthenes
1li = range(n+l) # création d'une liste d'entiers jusque n
1i[1l] = 0 # 0 (déja a 0) et 1 ne sont pas premiers
ncur = 2 # prochain nombre a tester
while ncur ** 2 <= n: # tant que ncur est inférieur a sqrt(n)
li[ncur*2::ncur] = [0] * (n // ncur - 1) # éliminer (mettre a 0)
les multiples de ncur
ncur suivant (il ne doit pas étre déja mis a zéro)
ncur += 1
while not li[ncur]:
ncur += 1
return [a for a in 1i if a '= 0] # renvoie une liste avec les élements

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 07:02

2026/02/01 07:02 3/5 Algorithmes sur entiers

non nuls

p=primelist(1000) print p </sxh>

Références

Nombre premier (wikipedia)

Crible d'Eratosthéne (wikipedia)

https://www.daniweb.com/software-development/python/code/216880/check-if-a-number-is-a-pr

ime-number-python

http://python.jpvweb.com/mesrecettespython/doku.php?id=liste_des_nombres_premiers

e http://fr.wikibooks.org/wiki/Exemples _de scripts Python#Impl.C3.A9mentation_du_crible d.27.C
3.89ratosth.C3.A8ne

e http://stackoverflow.com/questions/3939660/sieve-of-eratosthenes-finding-primes-python

e http://openclassrooms.com/forum/sujet/crible-d-eratosthene-87347

e Explication de |'affectation multiple via des slices

Factorisation en nombres premiers

Version élémentaires, par essais systématiques de diviseurs :

<sxh python; title : factorisation_nombres_premiers-01.py> #!/usr/bin/env python # -*- coding: UTF-8
- “"“ Factorisation en nombres premiers ; méthode par essais successifs "“"

def prime_factors(n):

i =[]
f =2 # premier facteur a tester
while f*f <= n:
while (n % f) == 0:
li.append(f) # on ajoute f a la liste

n=n/f # on divise par f
f=f+1 if f == 2 else f+2 # pour ne pas essayer les nombres pairs
if n > 1: # si on n'a pas obtenu n=1, alors le facteur restant est
premier
li.append(n)
return 1i

p=prime_factors(1234567890) print p </sxh>

le Me! : amélioration utilisant un crible

Références

e http://stackoverflow.com/questions/16996217/prime-factorization-list
e http://en.wikipedia.org/wiki/Talk%3APrime_factorization_algorithm (récursif)

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

http://fr.wikipedia.org/wiki/Nombre_premier
http://fr.wikipedia.org/wiki/Crible_d%27%C3%89ratosth%C3%A8ne
https://www.daniweb.com/software-development/python/code/216880/check-if-a-number-is-a-prime-number-python
https://www.daniweb.com/software-development/python/code/216880/check-if-a-number-is-a-prime-number-python
http://python.jpvweb.com/mesrecettespython/doku.php?id=liste_des_nombres_premiers
http://fr.wikibooks.org/wiki/Exemples_de_scripts_Python#Impl.C3.A9mentation_du_crible_d.27.C3.89ratosth.C3.A8ne
http://fr.wikibooks.org/wiki/Exemples_de_scripts_Python#Impl.C3.A9mentation_du_crible_d.27.C3.89ratosth.C3.A8ne
http://stackoverflow.com/questions/3939660/sieve-of-eratosthenes-finding-primes-python
http://openclassrooms.com/forum/sujet/crible-d-eratosthene-87347
http://gumuz.nl/weblog/python-extended-slice-assignment/
http://stackoverflow.com/questions/16996217/prime-factorization-list
http://en.wikipedia.org/wiki/Talk%3APrime_factorization_algorithm

Last update:
2015/04/14 teaching:progappchim:algos_entiers https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1429020265
16:04

* http://rosettacode.org/wiki/Prime_decomposition#Python (avancé)

e http://codereview.stackexchange.com/questions/11317/prime-factorization-of-a-number
(améliorable)

http://stackoverflow.com/questions/4643647/fast-prime-factorization-module (intéressant)
http://gilles.dubois10.free.fr/Nombres/Naturels/decomposition.html
http://python.jpvweb.com/mesrecettespython/doku.php?id=decomposition_en_facteurs_premier
s (améliorable)

http://anh.cs.luc.edu/331/code/factoring.py (intéressant)

http://en.wikipedia.org/wiki/Wheel factorization

Recherche du PPCM

Explication de la relation entre pgcd et ppcm via les facteurs premiers des nombres !

e [http://fr.wikipedia.org/wiki/Plus_petit commun_multiple]]

Probleme du sac a dos

e http://fr.wikipedia.org/wiki/Probl%C3%A8me_du sac_%C3%A0 dos

Probleme des apéritifs

e http://xkcd.com/287/
* http://paternault.fr/informatique/jouets/aperitif.html et ici

Applications chimiques

e formules CHON(S)
e protéines
e spectro de masse ?

Références diverses

e http://www.mi.fu-berlin.de/wiki/pub/ABI/QuantProtP4/isotope-distribution.pdf
e https://www.biostars.org/p/66772/

From:
https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link: X
https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1429020265 i

Last update: 2015/04/14 16:04

https://dvillers.umons.ac.be/wiki/

http://rosettacode.org/wiki/Prime_decomposition#Python
http://codereview.stackexchange.com/questions/11317/prime-factorization-of-a-number
http://stackoverflow.com/questions/4643647/fast-prime-factorization-module
http://gilles.dubois10.free.fr/Nombres/Naturels/decomposition.html
http://python.jpvweb.com/mesrecettespython/doku.php?id=decomposition_en_facteurs_premiers
http://python.jpvweb.com/mesrecettespython/doku.php?id=decomposition_en_facteurs_premiers
http://anh.cs.luc.edu/331/code/factoring.py
http://en.wikipedia.org/wiki/Wheel_factorization
http://fr.wikipedia.org/wiki/Plus_petit_commun_multiple]]
http://fr.wikipedia.org/wiki/Probl%C3%A8me_du_sac_%C3%A0_dos
http://xkcd.com/287/
http://paternault.fr/informatique/jouets/aperitif.html
https://git.framasoft.org/spalax/jouets/blob/master/README.rst
http://www.mi.fu-berlin.de/wiki/pub/ABI/QuantProtP4/isotope-distribution.pdf
https://www.biostars.org/p/66772/
https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/teaching:progappchim:algos_entiers?rev=1429020265

2026/02/01 07:02 5/5 Algorithmes sur entiers

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

	Algorithmes sur entiers
	Recherche du PGCD (plus grand commun diviseur)
	Références

	Nombres premiers
	Références

	Factorisation en nombres premiers
	Références
	Recherche du PPCM
	Problème du sac à dos
	Problème des apéritifs
	Applications chimiques
	Références diverses

