2025/12/05 19:55 1/2 System of linear equations

System of linear equations

Numerical methods used to solve such problem allow to introduce and experiment on xitme_complexity, considering cubic time behavior of standard algorithms and *i.e.* quadratic time solutions using LU decomposition.

Theory

- **System of linear equations**
- Gauss and Gauss-Jordan eliminations (diagonalization, triangularization)
- Pivot element, pivoting
- ■LU decomposition
- Chapter 2 in the book "Numerical Recipes" :
 - 2.0 Introduction
 - 2.1 Gauss-Jordan Elimination
 - 2.2 Gaussian Elimination with Backsubstitution
 - 2.3 LU Decomposition and Its Application
- Python NumPy library : NumPy Reference
 - Linear algebra (numpy.linalg): numpy.linalg.solve
- Time complexity analysis
 - Hint : in Python, use the timeit module

Exercices and applications

- Exercices :
 - write a python function for diagonalisation with partial pivoting
 - o random numbers → linear systems
 - comparison with numpy standard library
 - measurements of execution time to check cubic complexity

1D problems with neigbours

- Thermal diffusion and chemical diffusion (transient or stationary) on a regular 1D space with equidistant steps. ODE equations can be writen such a given evolution equation for node # i only imlies nodes i+1 and i-1
- Using *tridiagonal Thomas algorithm allows to save computational time thanks to n complexity
- ? Python library with Thomas algorithm

What you must have learned in this chapter

- Except ill-conditionned, linear systems can be solved "exactly" using linear algebra algorithms in a finite and known number of arithmetic operations.
- The accuracy is determined by the number of numerical figures which are encoded in floating point description
- For a general system of n equations, diagonalisation requires of the order of n³ operations. Also for solving a system using these method.
- If the coefficient matrix is the same for different systems (only the independent coefficients are different), it is possible to solve systems with the order of n² operations, if the matrix of coeeficients is decomposed in the product of two triangular matrix (Lower-Upper decomposition). This n³ step is realised only once.

References:

- Numerical recipes, The Art of Scientific Computing 3rd Edition, William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, 2007, isbn: 9780521880688
 - http://numerical.recipes/
 - in C : http://apps.nrbook.com/c/index.html
 - http://www2.units.it/ipl/students area/imm2/files/Numerical Recipes.pdf
 - http://apps.nrbook.com/empanel/index.html#

From:

https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:

https://dvillers.umons.ac.be/wiki/teaching:methcalchim:system of linear equations?rev=153906962

Last update: 2018/10/09 09:20

