System of linear equations

Numerical methods used to solve such problem allow to introduce and experiment on xTime_complexity, considering cubic time behavior of standard algorithms and i.e. quadratic time solutions using LU decomposition.

Theory

- खSystem_of_linear_equations
- \times Gaussian_elimination, Gauss and Gauss-Jordan eliminations (diagonalization, triangularization)
- XPivot_element, pivoting
- 区LU_decomposition- 区Triangular_matrix\#Forward_and_back_substitution
- Chapter 2 in the book "Numerical Recipes" :
- 2.0 Introduction
- 2.1 Gauss-Jordan Elimination
- 2.2 Gaussian Elimination with Backsubstitution
- 2.3 LU Decomposition and Its Application
- Python NumPy library : NumPy Reference
- Linear algebra (numpy.linalg) : numpy.linalg.solve
- Time complexity analysis
- Hint : in Python, use the timeit module

Exercices and applications

- Exercices :
- write a python function for diagonalisation with partial pivoting
- random numbers \rightarrow linear systems
- comparison with numpy standard library
- measurements of execution time to check cubic complexity

1D problems with neigbours

- Thermal diffusion and chemical diffusion (transient or stationary) on a regular 1D space with equidistant steps. ODE equations can be writen such a given evolution equation for node \# i only imlies nodes $\mathrm{i}+1$ and $\mathrm{i}-1$
- Using Xtridiagonal Thomas algorithm allows to save computational time thanks to n complexity
- ? Python library with Thomas algorithm

What you must have learned in this chapter

- Except ill-conditionned, linear systems can be solved "exactly" using linear algebra algorithms in a finite and known number of arithmetic operations.
- The accuracy is determined by the number of numerical figures which are encoded in floating point description
- For a general system of n equations, diagonalisation requires of the order of n^{3} operations. Also for solving a system using these method.
- If the coefficient matrix is the same for different systems (only the independent coefficients are different), it is possible to solve systems with the order of n^{2} operations, if the matrix of coeeficients is decomposed in the product of two triangular matrix (Lower-Upper decomposition). This n^{3} step is realised only once.

References:

- Numerical recipes, The Art of Scientific Computing 3rd Edition, William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, 2007, isbn: 9780521880688
- http://numerical.recipes/
- in C : http://apps.nrbook.com/c/index.html
- http://www2.units.it/ipl/students_area/imm2/files/Numerical_Recipes.pdf
- http://apps.nrbook.com/empanel/index.html\#

From:

https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki
Permanent link:
https://dvillers.umons.ac.be/wiki/teaching:methcalchim:system_of_linear_equations?rev=1539069629
Last update: 2018/10/09 09:20

