System of linear equations

Numerical methods used to solve such problem allow to introduce and experiment on Time_complexity, considering cubic time behavior of standard algorithms and *i.e.* quadratic time solutions using LU decomposition.

Theory

- System_of_linear_equations
- Gaussian_elimination, Gauss and Gauss-Jordan eliminations (diagonalization, triangularization)
- **Pivot_element**, pivoting
- **LU_decomposition**
 - Triangular_matrix#Forward_and_back_substitution
- Chapter 2 in the book "Numerical Recipes" :
 - 2.0 Introduction
 - 2.1 Gauss-Jordan Elimination
 - $\circ~$ 2.2 Gaussian Elimination with Backsubstitution
 - 2.3 LU Decomposition and Its Application
- Python NumPy library : NumPy Reference
 - Linear algebra (numpy.linalg) : numpy.linalg.solve
- Time complexity analysis
 - \circ Hint : in Python, use the timeit module

Jupyter notebooks

• Example file (to be continued) : https://notebooks.azure.com/linusable/libraries/samples-public/html/notebooks/calculation_meth ods_applied_to_chemistry/Gauss-Jordan-01.ipynb

Exercices and applications

- Exercices :
 - $\circ\,$ write a python function for diagonalisation with partial pivoting
 - $\circ~$ random numbers \rightarrow linear systems
 - $\circ\,$ comparison with numpy standard library
 - $\circ\,$ measurements of execution time to check cubic complexity

1D problems with neigbours

• Thermal diffusion and chemical diffusion (transient or stationary) on a regular 1D space with equidistant steps. ODE equations can be writen such a given evolution equation for node # i

Last update: 2018/10/18 teaching:methcalchim:system_of_linear_equations https://dvillers.umons.ac.be/wiki/teaching:methcalchim:system_of_linear_equations 10:10

only imlies nodes i+1 and i-1

- Using **x**tridiagonal Thomas algorithm allows to save computational time thanks to n complexity
- ? Python library with Thomas algorithm

What you must have learned in this chapter

- Except ill-conditionned, linear systems can be solved "exactly" using linear algebra algorithms in a finite and known number of arithmetic operations.
- The accuracy is determined by the number of numerical figures which are encoded in floating point description
- For a general system of n equations, diagonalisation requires of the order of n³ operations. Also for solving a system using these method.
- If the coefficient matrix is the same for different systems (only the independent coefficients are different), it is possible to solve systems with the order of n² operations, if the matrix of coeeficients is decomposed in the product of two triangular matrix (Lower-Upper decomposition). This n³ step is realised only once.

References :

- Numerical recipes, The Art of Scientific Computing 3rd Edition, William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, 2007, isbn: 9780521880688
 - http://numerical.recipes/
 - in C : http://apps.nrbook.com/c/index.html
 - http://www2.units.it/ipl/students_area/imm2/files/Numerical_Recipes.pdf
 - o http://apps.nrbook.com/empanel/index.html#

From: https://dvillers.umons.ac.be/wiki/ - **Didier Villers, UMONS - wiki**

Permanent link: https://dvillers.umons.ac.be/wiki/teaching:methcalchim:system_of_linear_equation

Last update: 2018/10/18 10:10