Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Dernière révision Les deux révisions suivantes
teaching:methcalchim:system_of_linear_equations [2018/10/08 16:06]
teaching:methcalchim:system_of_linear_equations [2018/10/09 09:20]
Ligne 29: Ligne 29:
   * Using [[wp>Tridiagonal_matrix_algorithm|tridiagonal Thomas algorithm]] allows to save computational time thanks to n complexity   * Using [[wp>Tridiagonal_matrix_algorithm|tridiagonal Thomas algorithm]] allows to save computational time thanks to n complexity
   * ? Python library with Thomas algorithm    * ? Python library with Thomas algorithm 
 +===== What you must have learned in this chapter =====
 +  * Except ill-conditionned, linear systems can be solved "exactly" using linear algebra algorithms in a finite and known number of arithmetic operations.
 +  * The accuracy is determined by the number of numerical figures which are encoded in floating point description
 +  * For a general system of n equations, diagonalisation requires of the order of n<sup>3</sup> operations. Also for solving a system using these method.
 +  * If the coefficient matrix is the same for different systems (only the independent coefficients are different), it is possible to solve systems with the order of n<sup>2</sup> operations, if the matrix of coeeficients is decomposed in the product of two triangular matrix (Lower-Upper decomposition). This n<sup>3</sup> step is realised only once.
 ===== References : ===== ===== References : =====
  • teaching/methcalchim/system_of_linear_equations.txt
  • Dernière modification: 2018/10/18 10:10
  • de villersd