teaching:exos:simulations_random_walks_codes

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
teaching:exos:simulations_random_walks_codes [2013/11/14 09:56] villersdteaching:exos:simulations_random_walks_codes [2018/11/05 12:09] (Version actuelle) – [Avec analyse de la distribution :] villersd
Ligne 5: Ligne 5:
 ===== Génération de nombres aléatoires ===== ===== Génération de nombres aléatoires =====
  
-<sxh python; title : 01_random.py> +<code python 01_random.py> 
-#!/usr/bin/env python+#!/usr/bin/python
 # -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
 +"""
 +cf. documentation cf http://docs.python.org/library/random.html 
 +random number generation - génération de nombres aléatoires
 +functions of interest : choice, randint, seed
 +"""
  
 from random import *  from random import * 
-# cf. documentation cf http://docs.python.org/library/random.html  
-# random number generation - génération de nombres aléatoires 
-# functions of interest : choice, randint, seed 
  
-facepiece=['pile','face'+facepiece = ['pile','face'
-valeurpiece=[0.01,0.02,0.05,0.1,0.2,0.5,1.,2.]+valeurpiece = [0.01,0.02,0.05,0.1,0.2,0.5,1.,2.]
  
-#for i in range(1):+for i in range(1):
     # choice : random choice of an element from a list     # choice : random choice of an element from a list
-    #print choice(facepiece), choice(valeurpiece)+    print(choice(facepiece), choice(valeurpiece))
     # randint : return a random integer number between 2 values (including limits)     # randint : return a random integer number between 2 values (including limits)
-    #print randint(0,10)       # imprime un nombre aléatoire entre 0 et 10 +    print(randint(0,10))       # imprime un nombre aléatoire entre 0 et 10 
-    #print choice(range(0,11,1))  # same function, using choice and range to create the list+    print(choice(range(0,11,1)))  # same function, using choice and range to create the list 
 +    
  
 # seed(ANY_DATA) : seeding of the random number generator with any (constant) data # seed(ANY_DATA) : seeding of the random number generator with any (constant) data
Ligne 32: Ligne 35:
     seed()   # to randomly initiate the generator     seed()   # to randomly initiate the generator
     for i in range(10):     for i in range(10):
-        print randint(1000,9999) +        print(randint(1000,9999)
-    print " " +    print(" ") 
-</sxh>+</code>
  
 ===== Histogrammes de nombres aléatoires  ===== ===== Histogrammes de nombres aléatoires  =====
  
-<sxh python; title : 02_random_histogram.py>+<code python 02_random_histogram.py>
 #!/usr/bin/env python #!/usr/bin/env python
 # -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
Ligne 50: Ligne 53:
 seed() seed()
  
-rval=[] +rval = [] 
-for j in range(10000):+for j in range(100000):
     rval.append(randint(0,99))   # append to the list a random (integer) number between 0 and 99     rval.append(randint(0,99))   # append to the list a random (integer) number between 0 and 99
  
Ligne 58: Ligne 61:
 # analysis - histogram  -  see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html # analysis - histogram  -  see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
 # http://fr.wikipedia.org/wiki/Histogramme # http://fr.wikipedia.org/wiki/Histogramme
-xh=np.array(rval)  # see http://www.scipy.org/Cookbook/BuildingArrays  transforme une liste en un tableau numérique de Numpy +xh = np.array(rval)  # see http://www.scipy.org/Cookbook/BuildingArrays  transforme une liste en un tableau numérique de Numpy 
-# print xh+# print(xh)
  
 fig = plt.figure() fig = plt.figure()
 ax = fig.add_subplot(111) ax = fig.add_subplot(111)
  
-n, bins, patches = ax.hist(xh, 10, facecolor='green', alpha=0.75) +n, bins, patches = ax.hist(xh, 50, facecolor='green', alpha=0.75) 
-print n  # les nombres d'occurences par classe +print(n # les nombres d'occurences par classe 
-print bins  # les classes, de largeur identique+print(bins # les classes, de largeur identique
  
 # modifier le nombre de nombres générés, les nombres de classes-bins,  # modifier le nombre de nombres générés, les nombres de classes-bins, 
  
 plt.show() plt.show()
-</sxh>+ 
 +</code>
  
 ===== Représenter le déplacement d'un objet  ===== ===== Représenter le déplacement d'un objet  =====
  
-<sxh python; title : 03_tkinter_simple_move.py>+<code python 03_tkinter_simple_move.py>
 #!/usr/bin/python #!/usr/bin/python
 # -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
  
-from Tkinter import *+from tkinter import *
 import time import time
  
 window = Tk() window = Tk()
-sizex=400 +sizex = 400 
-sizey=100+sizey = 200
 canvas = Canvas(window, width = sizex, height = sizey) canvas = Canvas(window, width = sizex, height = sizey)
 canvas.pack() canvas.pack()
 x = 100 # initial left-most edge of first ball x = 100 # initial left-most edge of first ball
 y = 30 # initial top-most edge of first ball y = 30 # initial top-most edge of first ball
-r=20                  # ball diameter  +r = 20                  # ball diameter  
-depx=2            # displacement at each move in x direction +depx = 2            # displacement at each move in x direction 
-depy=           # displacement at each move in y direction+depy =            # displacement at each move in y direction
  
 ball=canvas.create_oval(x,y,x+r,y+r,fill="blue") ball=canvas.create_oval(x,y,x+r,y+r,fill="blue")
  
 #moves #moves
-no_moves=10+no_moves = 140
 for j in range(no_moves): for j in range(no_moves):
     canvas.move(ball, depx, depy)     canvas.move(ball, depx, depy)
-    canvas.after(10)         # time delay in milliseconds+    canvas.after(20)         # time delay in milliseconds
     canvas.update()     canvas.update()
  
 time.sleep(5) # on attend quelques secondes time.sleep(5) # on attend quelques secondes
 window.destroy() window.destroy()
- +</code>
-</sxh>+
  
 ===== Représenter le déplacement de nombreux points ===== ===== Représenter le déplacement de nombreux points =====
-<sxh python; title : 04_tkinter_many_moves.py>+<code python 04_tkinter_many_moves.py>
 #!/usr/bin/python #!/usr/bin/python
 # -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
  
-from Tkinter import *+from tkinter import *
 import time import time
 +from random import * 
  
 window = Tk() window = Tk()
-sizex=400 +sizex = 400 
-sizey=600+sizey = 600
 canvas = Canvas(window, width = sizex, height = sizey) canvas = Canvas(window, width = sizex, height = sizey)
 canvas.pack() canvas.pack()
 x = 100 # initial left-most edge of first ball x = 100 # initial left-most edge of first ball
 y = 30 # initial top-most edge of first ball y = 30 # initial top-most edge of first ball
-r=20                  # ball diameter  +r = 16                  # ball diameter  
-depx=2            # displacement at each move in x direction +depx = 2            # displacement at each move in x direction 
-depy=0            # displacement at each move in y direction+depy = 0            # displacement at each move in y direction
  
 # create balls: # create balls:
-no_particles= 20 +no_particles = 20 
-dy = (sizey-2.)/(no_particles+1)       # y initial separation between balls +dy = (sizey-2.*y)/(no_particles+1)       # y initial separation between balls 
-print dy +print(dy) 
-ball_list=[]+ball_list = []
 for i in range(no_particles): for i in range(no_particles):
-    ball=canvas.create_oval(x,y,x+r,y+r,fill="blue")+    ball = canvas.create_oval(x,y,x+r,y+r,fill="blue")
     y = y+dy     y = y+dy
     ball_list.append(ball)     ball_list.append(ball)
  
 #moves #moves
-no_moves=100+no_moves = 100
 for j in range(no_moves): for j in range(no_moves):
     for ball in ball_list:     for ball in ball_list:
-        canvas.move(ball, depx, depy)+        canvas.move(ball, depx, choice([-2, 2]) ) 
 +#        canvas.move(ball, depx, depy)
     canvas.after(10)     canvas.after(10)
     canvas.update()     canvas.update()
Ligne 146: Ligne 151:
 time.sleep(5) # on attend quelques secondes time.sleep(5) # on attend quelques secondes
 window.destroy() window.destroy()
-</sxh>+</code>
  
 ===== Marche aléatoire d'un petit nombre de pas ===== ===== Marche aléatoire d'un petit nombre de pas =====
  
-<sxh python; title : 05_tkinter_random_walk_few_steps_1D.py>+<code python 05_tkinter_random_walk_few_steps_1D.py>
 #!/usr/bin/env python #!/usr/bin/env python
 # -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
  
-from Tkinter import *+from tkinter import *
 from random import choice     # http://docs.python.org/library/random.html from random import choice     # http://docs.python.org/library/random.html
 import numpy as np import numpy as np
Ligne 161: Ligne 166:
  
 window = Tk() window = Tk()
-sizex=200 +sizex = 200 
-sizey=600+sizey = 600
 canvas = Canvas(window, width = sizex, height = sizey) canvas = Canvas(window, width = sizex, height = sizey)
 canvas.pack() canvas.pack()
 x = 100 # initial left-most edge of first ball x = 100 # initial left-most edge of first ball
 y = 1 # initial top-most edge of first ball y = 1 # initial top-most edge of first ball
-r=4                  # ball diameter  +r = 4                  # ball diameter  
-depx=10            # displacement at each move in x direction +depx = 10            # displacement at each move in x direction 
-depy=0+depy = 0
  
 # create balls: # create balls:
-no_particles= 100 +no_particles = 6400 
-dy = (sizey-2.)/(no_particles+1)        # y initial separation between balls +dy = (sizey-2.*y)/(no_particles+1)        # y initial separation between balls 
-print dy +print(dy) 
-ball_list=[]+ball_list = []
 for i in range(no_particles): for i in range(no_particles):
-    ball=canvas.create_oval(x,y,x+r,y+r,fill="red")+    ball = canvas.create_oval(x,y,x+r,y+r,fill="red")
     y = y+dy     y = y+dy
     ball_list.append(ball)     ball_list.append(ball)
  
 #moves   #moves  
-no_moves= # number of moves+no_moves =  # number of moves
 for j in range(no_moves): for j in range(no_moves):
     for ball in ball_list:     for ball in ball_list:
Ligne 193: Ligne 198:
 xpos=[] xpos=[]
 for ball in ball_list: for ball in ball_list:
-    posi=canvas.coords(ball)+    posi = canvas.coords(ball)
     xpos.append(((no_moves+1.)/no_moves)*(posi[0]-x)/depx)     xpos.append(((no_moves+1.)/no_moves)*(posi[0]-x)/depx)
     # le facteur (no_moves+1.)/no_moves) permet de gérer la largeur des barres de l'histogramme     # le facteur (no_moves+1.)/no_moves) permet de gérer la largeur des barres de l'histogramme
-xh=np.array(xpos)  # see http://www.scipy.org/Cookbook/BuildingArrays +xh = np.array(xpos)  # see http://www.scipy.org/Cookbook/BuildingArrays 
-#print xh +#print(xh
  
 fig = plt.figure() fig = plt.figure()
 ax = fig.add_subplot(111) ax = fig.add_subplot(111)
 n, bins, patches = ax.hist(xh, (no_moves)+1, facecolor='green', alpha=0.75) n, bins, patches = ax.hist(xh, (no_moves)+1, facecolor='green', alpha=0.75)
-print n,bins, patches+print(n,bins, patches)
  
 plt.show() plt.show()
Ligne 208: Ligne 213:
 #window.mainloop() #window.mainloop()
  
-</sxh>+</code>
  
 ===== Marche aléatoire d'un grand nombre de pas ===== ===== Marche aléatoire d'un grand nombre de pas =====
  
-<sxh python; title : 06_tkinter_random_walk_many_steps_1D.py>+<code python 06_tkinter_random_walk_many_steps_1D.py>
 #!/usr/bin/env python #!/usr/bin/env python
 # -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
  
-from Tkinter import *+from tkinter import *
 from random import choice     # http://docs.python.org/library/random.html from random import choice     # http://docs.python.org/library/random.html
 import numpy as np import numpy as np
Ligne 223: Ligne 228:
  
 window = Tk() window = Tk()
-sizex=400 +sizex = 400 
-sizey=400+sizey = 400
 canvas = Canvas(window, width = sizex, height = sizey) canvas = Canvas(window, width = sizex, height = sizey)
 canvas.pack() canvas.pack()
 x = 200 # initial left-most edge of first ball x = 200 # initial left-most edge of first ball
 y = 1 # initial top-most edge of first ball y = 1 # initial top-most edge of first ball
-r=4                  # ball diameter  +r = 4                  # ball diameter  
-depx=1            # displacement at each move in x direction +depx = 1            # displacement at each move in x direction 
-depy=0+depy = 0
  
 # create balls: # create balls:
-no_particles= 2000+no_particles = 1600
 dy = (sizey-2.)/(no_particles+1)         # y initial separation between balls dy = (sizey-2.)/(no_particles+1)         # y initial separation between balls
-print dy +print(dy) 
-ball_list=[]+ball_list = []
 for i in range(no_particles): for i in range(no_particles):
-    ball=canvas.create_oval(x,y,x+r,y+r,fill="blue")+    ball = canvas.create_oval(x,y,x+r,y+r,fill="blue")
     y = y+dy     y = y+dy
     ball_list.append(ball)     ball_list.append(ball)
  
 #moves #moves
-no_moves=1000+no_moves = 200
 for j in range(no_moves): for j in range(no_moves):
     for ball in ball_list:     for ball in ball_list:
Ligne 253: Ligne 258:
 #analysis - histogram #analysis - histogram
 # see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html # see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
-xpos=[]+xpos = []
 for ball in ball_list: for ball in ball_list:
-    posi=canvas.coords(ball)+    posi = canvas.coords(ball)
     xpos.append((posi[0]-x)/depx)     xpos.append((posi[0]-x)/depx)
-xh=np.array(xpos)  # see http://www.scipy.org/Cookbook/BuildingArrays+xh = np.array(xpos)  # see http://www.scipy.org/Cookbook/BuildingArrays
 #  compute the mean mu and sigma  from xh (and/or theoretical value from random walk result) #  compute the mean mu and sigma  from xh (and/or theoretical value from random walk result)
-mu=np.mean(xh) +mu = np.mean(xh) 
-sigma=np.std(xh)+sigma = np.std(xh)
 fig = plt.figure() fig = plt.figure()
 ax = fig.add_subplot(111) ax = fig.add_subplot(111)
 # print xh  # print xh 
 n, bins, patches = ax.hist(xh, 10, facecolor='green', alpha=0.75) n, bins, patches = ax.hist(xh, 10, facecolor='green', alpha=0.75)
-print n,bins, patches+print(n,bins, patches)
 # hist uses np.histogram to create 'n' and 'bins'. cf. http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html # hist uses np.histogram to create 'n' and 'bins'. cf. http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
  
Ligne 276: Ligne 281:
  
 #window.mainloop() #window.mainloop()
-</sxh>+ 
 +</code>
  
 ==== Avec analyse de la distribution : ==== ==== Avec analyse de la distribution : ====
-<sxh python; title : 07_tkinter_random_walk_many_steps_1D-analysis.py> +<code python 07_tkinter_random_walk_many_steps_1D-analysis.py>
-#!/usr/bin/env python+
 # -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
  
-from Tkinter import *+from tkinter import *
 from random import choice     # http://docs.python.org/library/random.html from random import choice     # http://docs.python.org/library/random.html
 import numpy as np import numpy as np
Ligne 290: Ligne 295:
  
 window = Tk() window = Tk()
-sizex=400 +sizex = 400 
-sizey=400+sizey = 400
 canvas = Canvas(window, width = sizex, height = sizey) canvas = Canvas(window, width = sizex, height = sizey)
 canvas.pack() canvas.pack()
 x = 200 # initial left-most edge of first ball x = 200 # initial left-most edge of first ball
 y = 1 # initial top-most edge of first ball y = 1 # initial top-most edge of first ball
-r=4                  # ball diameter  +r = 4                  # ball diameter  
-depx=1            # displacement at each move in x direction +depx = 1            # displacement at each move in x direction 
-depy=0+depy = 0
  
 # create balls: # create balls:
-no_particles= 1000+no_particles = 1000
 dy = (sizey-2.)/(no_particles+1)         # y initial separation between balls dy = (sizey-2.)/(no_particles+1)         # y initial separation between balls
 #print dy #print dy
 ball_list=[] ball_list=[]
 for i in range(no_particles): for i in range(no_particles):
-    ball=canvas.create_oval(x,y,x+r,y+r,fill="blue")+    ball = canvas.create_oval(x,y,x+r,y+r,fill="blue")
     y = y+dy     y = y+dy
     ball_list.append(ball)     ball_list.append(ball)
  
 #moves #moves
-no_moves=900+no_moves = 400
 for j in range(no_moves): for j in range(no_moves):
     for ball in ball_list:     for ball in ball_list:
-        canvas.move(ball, choice([-1,-1,-1,-1,-1,1,1,1,1,1])*depx, depy)+        canvas.move(ball, choice([-1,-1,-1,-1,1,1,1,1,1,1])*depx, depy) #drift
     canvas.after(1)     canvas.after(1)
     canvas.update()     canvas.update()
Ligne 320: Ligne 325:
 #analysis - histogram #analysis - histogram
 # see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html # see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
-xpos=[]+xpos = []
 for ball in ball_list: for ball in ball_list:
-    posi=canvas.coords(ball)+    posi = canvas.coords(ball)
     xpos.append(posi[0]-x)     xpos.append(posi[0]-x)
-xh=np.array(xpos)  # see http://www.scipy.org/Cookbook/BuildingArrays+xh = np.array(xpos)  # see http://www.scipy.org/Cookbook/BuildingArrays
 #  compute the mean mu and sigma  from xh (and/or theoretical value from random walk result) #  compute the mean mu and sigma  from xh (and/or theoretical value from random walk result)
-mu=np.mean(xh) +mu = np.mean(xh) 
-sigma=np.std(xh)+sigma = np.std(xh)
 fig = plt.figure() fig = plt.figure()
 ax = fig.add_subplot(111) ax = fig.add_subplot(111)
 # print xh  # print xh 
 n, bins, patches = ax.hist(xh, 20, facecolor='green', alpha=0.75) n, bins, patches = ax.hist(xh, 20, facecolor='green', alpha=0.75)
-print mu, sigma +print(mu, sigma) 
-print n,bins, patches+print(n,bins, patches)
 # hist uses np.histogram to create 'n' and 'bins'. # hist uses np.histogram to create 'n' and 'bins'.
 # np.histogram returns the bin edges, so there will be ii probability # np.histogram returns the bin edges, so there will be ii probability
Ligne 351: Ligne 356:
  
 #window.mainloop() #window.mainloop()
-</sxh>+</code>
  • teaching/exos/simulations_random_walks_codes.1384419369.txt.gz
  • Dernière modification : 2013/11/14 09:56
  • de villersd