2026/02/01 05:12 1/7 Simulations numériques de marches aléatoires : programmes en Python

Simulations numériques de marches
aléatoires : programmes en Python

Pour une bonne compréhension, ces programmes doivent étre étudiés
successivement. Il est important d'exécuter le code Python et méme de tester des
petites modifications.

Génération de nombres aléatoires

01 random.py

#!/usr/bin/python

-*- coding: utf-8 -*-

cf. documentation cf http://docs.python.org/library/random.html
random number generation - génération de nombres aléatoires
functions of interest : choice, randint, seed

random &

facepiece ‘'pile', 'face'
valeurpiece 0.01,0.02,0.05,0.1,0.2,0.5,1.,2.

i range(1
choice : random choice of an element from a list
choice(facepiece), choice(valeurpiece
randint : return a random integer number between 2 values
(including limits)
randint (0, 10 # imprime un nombre aléatoire entre 0 et
10
choice(range(0,11,1 # same function, using choice and
range to create the list

seed(ANY DATA) : seeding of the random number generator with any
(constant) data

1in order to generate reproducible random sequences.

seed() - without data - uses internal clock value to "randomly"
initiate the generator !

j range (3
#seed('ma chaine personnielle') # reproducible initialization
seed # to randomly initiate the generator

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

https://dvillers.umons.ac.be/wiki/_export/code/teaching:exos:simulations_random_walks_codes?codeblock=0

Last
update:
2018/11/05
11:40

teaching:exos:simulations_random_walks_codes https://dvillers.umons.ac.be/wiki/teaching:exos:simulations_random_walks_codes?rev=1541414458

for 1 in range(10):
print(randint(1000,9999))
prin.t(ll ||)

Histogrammes de nombres aléatoires

02_random_histogram.py

#!/usr/bin/env python
-*- coding: utf-8 -*-

from random import * # cf. documentation cf
http://docs.python.org/library/random. html
import numpy as np

import matplotlib.pyplot as plt #
http://matplotlib.sourceforge.net/api/pyplot api.html#module-matplotlib
.pyplot

import matplotlib.mlab as mlab #
http://matplotlib.sourceforge.net/api/mlab api.html#module-matplotlib.m
lab

#seed('ma chaine personnelle') # reproducible initialization
seed()

rval = ||
for j in range(100000):

rval.append(randint(0,99)) # append to the list a random
(integer) number between 0 and 99

print rval # uncomment just to see the list of random numbers

analysis - histogram - see
http://matplotlib.sourceforge.net/examples/api/histogram demo.html

http://fr.wikipedia.org/wiki/Histogramme

xh = np.array(rval) # see http://www.scipy.org/Cookbook/BuildingArrays
transforme une liste en un tableau numérique de Numpy

print(xh)

fig = plt.figure()
ax = fig.add subplot(111)

n, bins, patches = ax.hist(xh, 50, facecolor='green', alpha=0.75)
print(n) # les nombres d'occurences par classe

print(bins) # les classes, de largeur identique

modifier le nombre de nombres générés, les nombres de classes-bins,

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 05:12

https://dvillers.umons.ac.be/wiki/_export/code/teaching:exos:simulations_random_walks_codes?codeblock=1

2026/02/01 05:12 3/7 Simulations numériques de marches aléatoires : programmes en Python

plt.show

Représenter le déplacement d'un objet

03_tkinter_simple_move.py

#!/usr/bin/python
-*- coding: utf-8 -*-

tkinter *
time

window = Tk

sizex

sizey

canvas = Canvas(window, width sizex, height sizey
canvas.pack

X # initial left-most edge of first ball

y # initial top-most edge of first ball

r # ball diameter

depx # displacement at each move in x direction
depy # displacement at each move in y direction

ball=canvas.create oval(x,y,x+r,y+r, fill="blue"

#moves
no_moves
j range(no_moves):
canvas.move(ball, depx, depy
canvas.after # time delay in milliseconds

canvas.update

time.sleep # on attend quelques secondes
window.destroy

Représenter le déplacement de nombreux points

<sxh python; title : 04_tkinter_many_moves.py> #!/usr/bin/python # -*- coding: utf-8 -*-
from Tkinter import * import time
window = Tk() sizex=400 sizey=600 canvas = Canvas(window, width = sizex, height = sizey)

canvas.pack() x = 100 # initial left-most edge of first ball y = 30 # initial top-most edge of first ball
r=20 # ball diameter depx=2 # displacement at each move in x direction depy=0 # displacement at

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

https://dvillers.umons.ac.be/wiki/_export/code/teaching:exos:simulations_random_walks_codes?codeblock=2

Last
update:
2018/11/05
11:40

teaching:exos:simulations_random_walks_codes https://dvillers.umons.ac.be/wiki/teaching:exos:simulations_random_walks_codes?rev=1541414458

each move in y direction

create balls: no_particles= 20 dy = (sizey-2.)/(no_particles+1) # y initial separation between balls
print dy ball_list=[] for i in range(no_particles):

ball=canvas.create oval(x,y,x+r,y+r,fill="blue")

y = y+dy
ball list.append(ball)

#moves no_moves=100 for j in range(no_moves):

for ball in ball list:
canvas.move(ball, depx, depy)

canvas.after(10)

canvas.update()

time.sleep(5) # on attend quelques secondes window.destroy() </sxh>

Marche aléatoire d'un petit nombre de pas

<sxh python; title : 05_tkinter random_walk few steps 1D.py> #!/usr/bin/env python # -*- coding:
utf-8 -*-

from Tkinter import * from random import choice # http://docs.python.org/library/random.html import
numpy as np import matplotlib.pyplot as plt #
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot import
matplotlib.mlab as mlab #
http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab

window = Tk() sizex=200 sizey=600 canvas = Canvas(window, width = sizex, height = sizey)
canvas.pack() x = 100 # initial left-most edge of first ball y = 1 # initial top-most edge of first ball
r=4 # ball diameter depx=10 # displacement at each move in x direction depy=0

create balls: no_particles= 100 dy = (sizey-2.)/(no_particles+1) # y initial separation between balls
print dy ball_list=[] for i in range(no_particles):

ball=canvas.create oval(x,y,x+r,y+r,fill="red")

y = y+dy
ball list.append(ball)

#moves no_moves=4 # number of moves for j in range(no_moves):
for ball in ball list:
canvas.move(ball, choice([-1,1])*depx, depy)
canvas.after(1)

canvas.update()

#analysis - histogram # see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 05:12

http://docs.python.org/library/random.html
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot
http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab
http://matplotlib.sourceforge.net/examples/api/histogram_demo.html

2026/02/01 05:12 5/7 Simulations numériques de marches aléatoires : programmes en Python

xpos=[] for ball in ball_list:

posi=canvas.coords(ball)

xpos.append(((no _moves+1l.)/no_moves)*(posi[0O]-x)/depx)

le facteur (no moves+l.)/no moves) permet de gérer la largeur des barres
de 1'histogramme

xh=np.array(xpos) # see http://www.scipy.org/Cookbook/BuildingArrays #print xh

fig = plt.figure() ax = fig.add_subplot(111) n, bins, patches = ax.hist(xh, (no_moves)+1,
facecolor='green’, alpha=0.75) print n,bins, patches

plt.show()
#window.mainloop()

</sxh>

Marche aléatoire d'un grand nombre de pas

<sxh python; title : 06_tkinter_random_walk_many_steps_1D.py> #!/usr/bin/env python # -*- coding:
utf-8 -*-

from Tkinter import * from random import choice # http://docs.python.org/library/random.html import
numpy as np import matplotlib.pyplot as plt #
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot import
matplotlib.mlab as mlab #
http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab

window = Tk() sizex=400 sizey=400 canvas = Canvas(window, width = sizex, height = sizey)
canvas.pack() x = 200 # initial left-most edge of first ball y = 1 # initial top-most edge of first ball
r=4 # ball diameter depx=1 # displacement at each move in x direction depy=0

create balls: no_particles= 2000 dy = (sizey-2.)/(no_particles+1) # y initial separation between
balls print dy ball_list=[] for i in range(no_particles):

ball=canvas.create oval(x,y,x+r,y+r,fill="blue")

y = y+dy
ball list.append(ball)

#moves no_moves=1000 for j in range(no_moves):

for ball in ball list:

canvas.move(ball, choice([-1,1])*depx, depy)
canvas.after(1)
canvas.update()

#analysis - histogram # see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
xpos=[] for ball in ball_list:

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

http://www.scipy.org/Cookbook/BuildingArrays
http://docs.python.org/library/random.html
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot
http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab
http://matplotlib.sourceforge.net/examples/api/histogram_demo.html

Last
update:
2018/11/05
11:40

teaching:exos:simulations_random_walks_codes https://dvillers.umons.ac.be/wiki/teaching:exos:simulations_random_walks_codes?rev=1541414458

posi=canvas.coords(ball)
xpos.append((posi[0]-x)/depx)

xh=np.array(xpos) # see http://www.scipy.org/Cookbook/BuildingArrays # compute the mean mu and
sigma from xh (and/or theoretical value from random walk result) mu=np.mean(xh) sigma=np.std(xh)
fig = plt.figure() ax = fig.add_subplot(111) # print xh n, bins, patches = ax.hist(xh, 10,
facecolor='green’, alpha=0.75) print n,bins, patches # hist uses np.histogram to create 'n' and 'bins'.
cf. http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html

ax.set_xlabel('X positions') ax.set_ylabel('Occurences')
ax.grid(True)
plt.show()

#window.mainloop() </sxh>

Avec analyse de la distribution :

<sxh python; title : 07 _tkinter random_walk_many_steps_1D-analysis.py> #!/usr/bin/env python # -*-
coding: utf-8 -*-

from Tkinter import * from random import choice # http://docs.python.org/library/random.html import
numpy as np import matplotlib.pyplot as plt #
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot import
matplotlib.mlab as mlab #
http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab

window = Tk() sizex=400 sizey=400 canvas = Canvas(window, width = sizex, height = sizey)
canvas.pack() x = 200 # initial left-most edge of first ball y = 1 # initial top-most edge of first ball
r=4 # ball diameter depx=1 # displacement at each move in x direction depy=0

create balls: no_particles= 1000 dy = (sizey-2.)/(no_particles+1) # y initial separation between
balls #print dy ball_list=[] for i in range(no_particles):

ball=canvas.create oval(x,y,x+r,y+r,fill="blue")

y = y+dy
ball list.append(ball)

#moves no_moves=900 for j in range(no_moves):

for ball in ball list:

canvas.move(ball, choice([-1,-1,-1,-1,-1,1,1,1,1,1])*depx, depy)
canvas.after(1)
canvas.update()

#analysis - histogram # see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
xpos=[] for ball in ball_list:

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 05:12

http://www.scipy.org/Cookbook/BuildingArrays
http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
http://docs.python.org/library/random.html
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot
http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab
http://matplotlib.sourceforge.net/examples/api/histogram_demo.html

2026/02/01 05:12 717 Simulations numériques de marches aléatoires : programmes en Python

posi=canvas.coords(ball)
Xpos.append(posi[0]-x)

xh=np.array(xpos) # see http://www.scipy.org/Cookbook/BuildingArrays # compute the mean mu and
sigma from xh (and/or theoretical value from random walk result) mu=np.mean(xh) sigma=np.std(xh)
fig = plt.figure() ax = fig.add_subplot(111) # print xh n, bins, patches = ax.hist(xh, 20,
facecolor='green’, alpha=0.75) print mu, sigma print n,bins, patches # hist uses np.histogram to
create 'n' and 'bins'. # np.histogram returns the bin edges, so there will be ii probability # density
values in n, ii+1 bin edges in bins and ii patches. To get # everything lined up, we'll compute the bin
centers bincenters = 0.5%(bins[1:]+bins[:-1]) # add a 'best fit' line for the normal PDF yh = (bins[1]-
bins[0])*no_particles*mlab.normpdf(bincenters, mu, sigma) #
http://matplotlib.sourceforge.net/api/mlab_api.html#matplotlib.mlab.normpdf | = ax.plot(bincenters,
yh, 'r-', linewidth=1) #print n ax.set_xlabel('X positions') ax.set _ylabel('Occurences')

ax.grid(True)
plt.show()

#window.mainloop() </sxh>

From:
https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:
https://dvillers.umons.ac.be/wiki/teaching:exos:simulations_random_walks_codes?rev=1541414458

Last update: 2018/11/05 11:40

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

http://www.scipy.org/Cookbook/BuildingArrays
http://matplotlib.sourceforge.net/api/mlab_api.html#matplotlib.mlab.normpdf
https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/teaching:exos:simulations_random_walks_codes?rev=1541414458

	Simulations numériques de marches aléatoires : programmes en Python
	Génération de nombres aléatoires
	Histogrammes de nombres aléatoires
	Représenter le déplacement d'un objet
	Représenter le déplacement de nombreux points
	Marche aléatoire d'un petit nombre de pas
	Marche aléatoire d'un grand nombre de pas
	Avec analyse de la distribution :

