
2026/02/01 05:12 1/7 Simulations numériques de marches aléatoires : programmes en Python

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Simulations numériques de marches
aléatoires : programmes en Python

Pour une bonne compréhension, ces programmes doivent être étudiés
successivement. Il est important d'exécuter le code Python et même de tester des
petites modifications.

Génération de nombres aléatoires

01_random.py

#!/usr/bin/python
-*- coding: utf-8 -*-
"""
cf. documentation cf http://docs.python.org/library/random.html
random number generation - génération de nombres aléatoires
functions of interest : choice, randint, seed
"""

from random import *

facepiece = ['pile','face']
valeurpiece = [0.01,0.02,0.05,0.1,0.2,0.5,1.,2.]

for i in range(1):
 # choice : random choice of an element from a list
 print(choice(facepiece), choice(valeurpiece))
 # randint : return a random integer number between 2 values
(including limits)
 print(randint(0,10)) # imprime un nombre aléatoire entre 0 et
10
 print(choice(range(0,11,1))) # same function, using choice and
range to create the list

seed(ANY_DATA) : seeding of the random number generator with any
(constant) data
in order to generate reproducible random sequences.
seed() - without data - uses internal clock value to "randomly"
initiate the generator !

for j in range(3):
 #seed('ma chaîne personnielle') # reproducible initialization
 seed() # to randomly initiate the generator

https://dvillers.umons.ac.be/wiki/_export/code/teaching:exos:simulations_random_walks_codes?codeblock=0

Last
update:
2018/11/05
11:37

teaching:exos:simulations_random_walks_codes https://dvillers.umons.ac.be/wiki/teaching:exos:simulations_random_walks_codes?rev=1541414231

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 05:12

 for i in range(10):
 print(randint(1000,9999))
 print(" ")

Histogrammes de nombres aléatoires

02_random_histogram.py

#!/usr/bin/env python
-*- coding: utf-8 -*-

from random import * # cf. documentation cf
http://docs.python.org/library/random.html
import numpy as np
import matplotlib.pyplot as plt #
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib
.pyplot
import matplotlib.mlab as mlab #
http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.m
lab

#seed('ma chaîne personnelle') # reproducible initialization
seed()

rval = []
for j in range(100000):
 rval.append(randint(0,99)) # append to the list a random
(integer) number between 0 and 99

print rval # uncomment just to see the list of random numbers

analysis - histogram - see
http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
http://fr.wikipedia.org/wiki/Histogramme
xh = np.array(rval) # see http://www.scipy.org/Cookbook/BuildingArrays
transforme une liste en un tableau numérique de Numpy
print(xh)

fig = plt.figure()
ax = fig.add_subplot(111)

n, bins, patches = ax.hist(xh, 50, facecolor='green', alpha=0.75)
print(n) # les nombres d'occurences par classe
print(bins) # les classes, de largeur identique

modifier le nombre de nombres générés, les nombres de classes-bins,

https://dvillers.umons.ac.be/wiki/_export/code/teaching:exos:simulations_random_walks_codes?codeblock=1

2026/02/01 05:12 3/7 Simulations numériques de marches aléatoires : programmes en Python

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

plt.show()

Représenter le déplacement d'un objet

<sxh python; title : 03_tkinter_simple_move.py> #!/usr/bin/python # -*- coding: utf-8 -*-

from Tkinter import * import time

window = Tk() sizex=400 sizey=100 canvas = Canvas(window, width = sizex, height = sizey)
canvas.pack() x = 100 # initial left-most edge of first ball y = 30 # initial top-most edge of first ball
r=20 # ball diameter depx=2 # displacement at each move in x direction depy=0 # displacement at
each move in y direction

ball=canvas.create_oval(x,y,x+r,y+r,fill=“blue”)

#moves no_moves=10 for j in range(no_moves):

 canvas.move(ball, depx, depy)
 canvas.after(10) # time delay in milliseconds
 canvas.update()

time.sleep(5) # on attend quelques secondes window.destroy()

</sxh>

Représenter le déplacement de nombreux points

<sxh python; title : 04_tkinter_many_moves.py> #!/usr/bin/python # -*- coding: utf-8 -*-

from Tkinter import * import time

window = Tk() sizex=400 sizey=600 canvas = Canvas(window, width = sizex, height = sizey)
canvas.pack() x = 100 # initial left-most edge of first ball y = 30 # initial top-most edge of first ball
r=20 # ball diameter depx=2 # displacement at each move in x direction depy=0 # displacement at
each move in y direction

create balls: no_particles= 20 dy = (sizey-2.)/(no_particles+1) # y initial separation between balls
print dy ball_list=[] for i in range(no_particles):

 ball=canvas.create_oval(x,y,x+r,y+r,fill="blue")
 y = y+dy
 ball_list.append(ball)

#moves no_moves=100 for j in range(no_moves):

 for ball in ball_list:

Last
update:
2018/11/05
11:37

teaching:exos:simulations_random_walks_codes https://dvillers.umons.ac.be/wiki/teaching:exos:simulations_random_walks_codes?rev=1541414231

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 05:12

 canvas.move(ball, depx, depy)
 canvas.after(10)
 canvas.update()

time.sleep(5) # on attend quelques secondes window.destroy() </sxh>

Marche aléatoire d'un petit nombre de pas

<sxh python; title : 05_tkinter_random_walk_few_steps_1D.py> #!/usr/bin/env python # -*- coding:
utf-8 -*-

from Tkinter import * from random import choice # http://docs.python.org/library/random.html import
numpy as np import matplotlib.pyplot as plt #
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot import
matplotlib.mlab as mlab #
http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab

window = Tk() sizex=200 sizey=600 canvas = Canvas(window, width = sizex, height = sizey)
canvas.pack() x = 100 # initial left-most edge of first ball y = 1 # initial top-most edge of first ball
r=4 # ball diameter depx=10 # displacement at each move in x direction depy=0

create balls: no_particles= 100 dy = (sizey-2.)/(no_particles+1) # y initial separation between balls
print dy ball_list=[] for i in range(no_particles):

 ball=canvas.create_oval(x,y,x+r,y+r,fill="red")
 y = y+dy
 ball_list.append(ball)

#moves no_moves=4 # number of moves for j in range(no_moves):

 for ball in ball_list:
 canvas.move(ball, choice([-1,1])*depx, depy)
 canvas.after(1)
 canvas.update()

#analysis - histogram # see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
xpos=[] for ball in ball_list:

 posi=canvas.coords(ball)
 xpos.append(((no_moves+1.)/no_moves)*(posi[0]-x)/depx)
 # le facteur (no_moves+1.)/no_moves) permet de gérer la largeur des barres
de l'histogramme

xh=np.array(xpos) # see http://www.scipy.org/Cookbook/BuildingArrays #print xh

fig = plt.figure() ax = fig.add_subplot(111) n, bins, patches = ax.hist(xh, (no_moves)+1,
facecolor='green', alpha=0.75) print n,bins, patches

http://docs.python.org/library/random.html
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot
http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab
http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
http://www.scipy.org/Cookbook/BuildingArrays

2026/02/01 05:12 5/7 Simulations numériques de marches aléatoires : programmes en Python

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

plt.show()

#window.mainloop()

</sxh>

Marche aléatoire d'un grand nombre de pas

<sxh python; title : 06_tkinter_random_walk_many_steps_1D.py> #!/usr/bin/env python # -*- coding:
utf-8 -*-

from Tkinter import * from random import choice # http://docs.python.org/library/random.html import
numpy as np import matplotlib.pyplot as plt #
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot import
matplotlib.mlab as mlab #
http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab

window = Tk() sizex=400 sizey=400 canvas = Canvas(window, width = sizex, height = sizey)
canvas.pack() x = 200 # initial left-most edge of first ball y = 1 # initial top-most edge of first ball
r=4 # ball diameter depx=1 # displacement at each move in x direction depy=0

create balls: no_particles= 2000 dy = (sizey-2.)/(no_particles+1) # y initial separation between
balls print dy ball_list=[] for i in range(no_particles):

 ball=canvas.create_oval(x,y,x+r,y+r,fill="blue")
 y = y+dy
 ball_list.append(ball)

#moves no_moves=1000 for j in range(no_moves):

 for ball in ball_list:
 canvas.move(ball, choice([-1,1])*depx, depy)
 canvas.after(1)
 canvas.update()

#analysis - histogram # see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
xpos=[] for ball in ball_list:

 posi=canvas.coords(ball)
 xpos.append((posi[0]-x)/depx)

xh=np.array(xpos) # see http://www.scipy.org/Cookbook/BuildingArrays # compute the mean mu and
sigma from xh (and/or theoretical value from random walk result) mu=np.mean(xh) sigma=np.std(xh)
fig = plt.figure() ax = fig.add_subplot(111) # print xh n, bins, patches = ax.hist(xh, 10,
facecolor='green', alpha=0.75) print n,bins, patches # hist uses np.histogram to create 'n' and 'bins'.
cf. http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html

ax.set_xlabel('X positions') ax.set_ylabel('Occurences')

ax.grid(True)

http://docs.python.org/library/random.html
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot
http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab
http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
http://www.scipy.org/Cookbook/BuildingArrays
http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html

Last
update:
2018/11/05
11:37

teaching:exos:simulations_random_walks_codes https://dvillers.umons.ac.be/wiki/teaching:exos:simulations_random_walks_codes?rev=1541414231

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 05:12

plt.show()

#window.mainloop() </sxh>

Avec analyse de la distribution :

<sxh python; title : 07_tkinter_random_walk_many_steps_1D-analysis.py> #!/usr/bin/env python # -*-
coding: utf-8 -*-

from Tkinter import * from random import choice # http://docs.python.org/library/random.html import
numpy as np import matplotlib.pyplot as plt #
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot import
matplotlib.mlab as mlab #
http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab

window = Tk() sizex=400 sizey=400 canvas = Canvas(window, width = sizex, height = sizey)
canvas.pack() x = 200 # initial left-most edge of first ball y = 1 # initial top-most edge of first ball
r=4 # ball diameter depx=1 # displacement at each move in x direction depy=0

create balls: no_particles= 1000 dy = (sizey-2.)/(no_particles+1) # y initial separation between
balls #print dy ball_list=[] for i in range(no_particles):

 ball=canvas.create_oval(x,y,x+r,y+r,fill="blue")
 y = y+dy
 ball_list.append(ball)

#moves no_moves=900 for j in range(no_moves):

 for ball in ball_list:
 canvas.move(ball, choice([-1,-1,-1,-1,-1,1,1,1,1,1])*depx, depy)
 canvas.after(1)
 canvas.update()

#analysis - histogram # see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
xpos=[] for ball in ball_list:

 posi=canvas.coords(ball)
 xpos.append(posi[0]-x)

xh=np.array(xpos) # see http://www.scipy.org/Cookbook/BuildingArrays # compute the mean mu and
sigma from xh (and/or theoretical value from random walk result) mu=np.mean(xh) sigma=np.std(xh)
fig = plt.figure() ax = fig.add_subplot(111) # print xh n, bins, patches = ax.hist(xh, 20,
facecolor='green', alpha=0.75) print mu, sigma print n,bins, patches # hist uses np.histogram to
create 'n' and 'bins'. # np.histogram returns the bin edges, so there will be ii probability # density
values in n, ii+1 bin edges in bins and ii patches. To get # everything lined up, we'll compute the bin
centers bincenters = 0.5*(bins[1:]+bins[:-1]) # add a 'best fit' line for the normal PDF yh = (bins[1]-
bins[0])*no_particles*mlab.normpdf(bincenters, mu, sigma) #
http://matplotlib.sourceforge.net/api/mlab_api.html#matplotlib.mlab.normpdf l = ax.plot(bincenters,

http://docs.python.org/library/random.html
http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot
http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab
http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
http://www.scipy.org/Cookbook/BuildingArrays
http://matplotlib.sourceforge.net/api/mlab_api.html#matplotlib.mlab.normpdf

2026/02/01 05:12 7/7 Simulations numériques de marches aléatoires : programmes en Python

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

yh, 'r–', linewidth=1) #print n ax.set_xlabel('X positions') ax.set_ylabel('Occurences')

ax.grid(True)

plt.show()

#window.mainloop() </sxh>

From:
https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:
https://dvillers.umons.ac.be/wiki/teaching:exos:simulations_random_walks_codes?rev=1541414231

Last update: 2018/11/05 11:37

https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/teaching:exos:simulations_random_walks_codes?rev=1541414231

	Simulations numériques de marches aléatoires : programmes en Python
	Génération de nombres aléatoires
	Histogrammes de nombres aléatoires
	Représenter le déplacement d'un objet
	Représenter le déplacement de nombreux points
	Marche aléatoire d'un petit nombre de pas
	Marche aléatoire d'un grand nombre de pas
	Avec analyse de la distribution :

