teaching:exos:cv_vibration_einstein-solutions

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
teaching:exos:cv_vibration_einstein-solutions [2018/02/19 14:06] – [Résolution utilisant les relations de l'ensemble microcanonique] villersdteaching:exos:cv_vibration_einstein-solutions [2018/02/20 11:07] (Version actuelle) – [Résolution utilisant les relations de l'ensemble canonique] villersd
Ligne 95: Ligne 95:
 On a bien sûr $dF = -SdT -pdV$,et $ = -\frac{\partial F}{\partial T} = k \log Z + kT \frac{\partial \log Z}{\partial T}$ On a bien sûr $dF = -SdT -pdV$,et $ = -\frac{\partial F}{\partial T} = k \log Z + kT \frac{\partial \log Z}{\partial T}$
 Donc $F = E - TS$, ou les différentes égalités suivantes : Donc $F = E - TS$, ou les différentes égalités suivantes :
-$$E = F + TS = kT^2 \frac{\partial \log Z}{\partial T} = \frac{kT^2}{Z} \frac{\partial Z}{\partial T} = - \frac{k}{Z} \frac{\partial Z}{\partial (1/T)}$$+$$E = F + TS = kT^2 \frac{\partial \log Z}{\partial T} = - k \frac{\partial \log Z}{\partial (1/T)} = \frac{kT^2}{Z} \frac{\partial Z}{\partial T} = - \frac{k}{Z} \frac{\partial Z}{\partial (1/T)}$$
     * Retrouver l'expression de la chaleur spécifique de vibration     * Retrouver l'expression de la chaleur spécifique de vibration
 $$Z_{Ivib} = \sum_{n=0}^{\infty} \exp(-(n+1/2)\frac{\Theta}{T} = \exp(-\Theta/2T) \sum_{n=0}^{\infty} \exp(-n\Theta/T)$$ $$Z_{Ivib} = \sum_{n=0}^{\infty} \exp(-(n+1/2)\frac{\Theta}{T} = \exp(-\Theta/2T) \sum_{n=0}^{\infty} \exp(-n\Theta/T)$$
Ligne 138: Ligne 138:
 Les opérateurs de sommation et de dérivée seconde peuvent être inversés , faisant apparaître la somme d'état : Les opérateurs de sommation et de dérivée seconde peuvent être inversés , faisant apparaître la somme d'état :
 $$<E_{vib}^2> = \frac{(k \Theta)^2}{Z} \frac{\partial^2 Z}{\partial (\Theta /T)^2}$$ $$<E_{vib}^2> = \frac{(k \Theta)^2}{Z} \frac{\partial^2 Z}{\partial (\Theta /T)^2}$$
 +
 +À ce stade, on connaît les expressions de $<E_{vib}^2>$ et de $<E_{vib}>^2$. Il apparaît intéressant d'effectuer cette dérivée :
 +
 +$$\frac{\partial}{\partial (\Theta /T)} \frac{(k \Theta)^2}{Z} \frac{\partial Z}{\partial (\Theta /T)} = - \frac{(k \Theta)^2}{Z^2} \left(\frac{\partial Z}{\partial (\Theta /T)}\right)^2 + \frac{(k \Theta)^2}{Z} \frac{\partial^2 Z}{\partial (\Theta /T)^2}$$
 +
 +Cette expression est exactement la variance $V = <E_{vib}^2> - <E_{vib}>^2$, et, étant donné que $<E_{vib}> = - \frac{k \Theta}{Z} \frac{\partial Z}{\partial (\Theta /T)}$, peut aussi s'écrire comme :
 +
 +$$-k \Theta \frac{\partial <E_{vib}>}{\partial (\Theta /T)} = -k \frac{\partial <E_{vib}>}{\partial (1/T)} = kT^2 \frac{\partial <E_{vib}>}{\partial T} = kT^2 C_V$$
 +
 +<note tip>À ce stade, on a finalement traité un seul vibrateur, mais on peut analyser l'influence de la taille (N) d'un système. La variance (ou $C_V$) sera multipliée par N. L'écart-type sera donc proportionnel à $\sqrt{N}$, et l'écart type relatif sera inversement proportionnel à $\sqrt{N}$.
 +
 +**Les fluctuations relatives de l'énergie d'un système thermodynamique qui peuvent être importantes pour un système donné de N particules seront donc réduites d'un facteur 10 si le nombre de particules est cent fois plus important. Cela explique qu'un système sera décrit correctement par la thermodynamique s'il comporte un nombre minimum de particules. Dix milles, un million sont des ordres de grandeurs d'une taille minimale.**
 +</note>
  
  
  • teaching/exos/cv_vibration_einstein-solutions.1519045578.txt.gz
  • Dernière modification : 2018/02/19 14:06
  • de villersd