
2026/02/01 06:27 1/12 Tutoriel sur Cairo pour les programmeurs Python

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Tutoriel sur Cairo pour les programmeurs
Python

Texte original en anglais de Michael Urman.

Cairo est une puissante bibliothèque graphique 2D.

Ce document vous présente la façon dont fonctionne Cairo et la plupart des fonctions que vous
utiliserez pour créer le graphisme que vous désirez.

Afin de suivre ce tutoriel sur votre ordinateur, vous avez besoin des éléments suivants:

Cairo lui-même,1.
Python pour exécuter les morceaux de code, et2.
Pycairo pour joindre les deux précédents.3.

Ce tutoriel se base essentiellement sur la traduction du "Cairo Tutorial for Python
Programmers", avec l'aimable autorisation de l'auteur original, Michael
Urman (Copyright © 2005-2008 Michael Urman). Le texte traduit, les images et codes
python issus du site de M. Urman restent donc sous la licence GPL.

Lorsque la première personne est utilisée dans le texte traduit, il faut comprendre
“Michael Urman”. Si des informations sont ajoutées indépendantes de la traduction, ce
sera clairement spécifié, et placé en fin de document.

Si vous êtes prêt à relever le défi, vous pouvez traduire les exemples vers le langage et
l'environnement hôte de votre choix et n'utiliser que Cairo. Nis Martensen a gracieusement fait
l'adaptation pour le langage C du présent document. Cette traduction C a été adoptée par le projet
Cairo comme son tutoriel.

Remarque: Tout le code exemple a une dépendance sur cairo 1.2.0 ou ultérieur pour
cairo.SVGSurface. En outre plusieurs exemples nécessitent push_group() et pop_group(), et les
gradients radiaux nécessitent la version 1.4 pour un rendu correct. Vous pouvez contourner le
premier cas, en changeant de nom de fichier cairo.SVGSurface(filename + '.svg', width, height) à
cairo.ImageSurface(cairo.FORMAT_ARGB32, width, height), mais en réalité vous devriez envisager de
mettre à niveau Cairo.

Principe de dessin de Cairo

Afin d'expliquer les opérations utilisées par Cairo, nous avons d'abord examiner de manière
schématique la façon de dessiner de Cairo. Il y a seulement quelques concepts impliqués, qui sont
ensuite appliqués à plusieurs reprises par les différentes méthodes. Je vais d'abord décrire les noms :
destination, source, masque, chemin, et contexte. Ensuite je décrirai les verbes qui offrent les moyens
de manipuler les noms et d'en tirer les graphiques que vous souhaitez créer. Voici le code à l'origine
de la confection de tous les diagrammes, mais je vous conseille de ne pas le lire maintenant.

http://cairographics.org/
http://cairographics.org/snapshots/
http://www.python.org/download/
http://cairographics.org/snapshots/
http://www.tortall.net/mu/wiki/CairoTutorial
http://www.tortall.net/mu/wiki/CairoTutorial
http://www.gnu.org/copyleft/gpl.html
http://cairographics.org/tutorial/
http://www.tortall.net/mu/wiki/CairoTutorial#verbs
http://www.tortall.net/mu/wiki/CairoTutorial/diagram.py?raw

Last update: 2012/02/27 17:23 floss:python:cairo-tutoriel https://dvillers.umons.ac.be/wiki/floss:python:cairo-tutoriel?rev=1330359808

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 06:27

Si vous trouvez les descriptions ci-dessous trop clairsemée, Donn Ingle a créé des diagrammes
synoptiques en SVG qui tentent de lier le tout. Ils nécessitent Inkscape (ou un programme similaire)
pour afficher, ainsi que deux polices spécifiques pour l'apparence correcte. Zoomez sur chaque
«pages» au fur et à mesure de votre lecture. Comme Donn demande de télécharger et partager les
diagrammes si on les trouve utiles, vous pourrez les télécharger en suivant ce lien.

Noms

Les noms de Cairo sont un peu abstraits. Pour les rendre concrets, Michael Urman nous propose des
diagrammes qui illustrent la façon dont ils interagissent. Les trois premiers noms sont les trois
couches dans les schémas que vous voyez dans cette section. Le quatrième nom, le chemin, est placé
sur la couche intermédiaire lorsque c'est pertinent. Le dernier nom, le contexte, n'est pas représenté.

Destination

La destination est la surface sur laquelle vous dessinez. Elle peut être liée à une matrice de pixels, ou
elle pourrait être liée à un fichier SVG ou PDF, ou autre chose. Cette surface recueille les éléments de
votre graphique lorsque vous les appliquez, vous permettant de construire un travail complexe,
comme une peinture sur une toile.

Source

La source est la «peinture» avec laquelle vous allez travailler. Elle est présentée telle qu'elle est (un
noir uni pour plusieurs exemples) ou de manière translucide pour montrer les couches inférieures.
Contrairement à la vraie peinture, elle ne doit pas nécessairement être une seule couleur, cela peut
être un motif de ou même une surface de destination préalablement créée. En outre, contrairement à
la peinture réelle, la source peut contenir une information sur la transparence, le canal Alpha.

Masque (mask)

Le masque est l'élément le plus important : il contrôle l'endroit où vous appliquez la source vers la
destination. On le montrera comme une couche jaune avec des trous là où la source peut traverser.
Lorsque vous appliquez un verbe de dessin, c'est comme si vous tamponnez la source sur la
destination. Partout où le masque le permet, la source est copiée. Là où le masque l'interdit, rien ne
passe.

Chemin (path)

Le chemin est quelque part entre une partie du masque et une partie du contexte. Il sera illustré sous

http://inkscape.org/
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:destination.png
http://www.cairographics.org/manual/cairo-surfaces.html
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:source.png
http://www.cairographics.org/manual/cairo-cairo-pattern-t.html
http://www.cairographics.org/manual/cairo-surfaces.html
http://en.wikipedia.org/wiki/Alpha_compositing
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:the-mask.png

2026/02/01 06:27 3/12 Tutoriel sur Cairo pour les programmeurs Python

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

forme de fines lignes vertes sur la couche du masque. Il est manipulé par des verbes de chemin, puis
utilisé par les verbes de dessin.

Contexte (context)

Le contexte permet de suivre tout ce que les verbes affectent. Il suit une source, une destination, et
un masque. Il suit également plusieurs variables auxiliaires comme la largeur de ligne et le style, le
type et la taille de la police, et plus encore. Et surtout, il suit le chemin, qui est transformé en un
masque par les verbes de dessin.

Verbes

La raison pour laquelle on utilise Cairo dans un programme, c'est pour dessiner. Cairo fonctionne en
interne avec une opération fondamentale de dessin : la source et le masque sont placés librement
quelque part sur ​​la destination. Ensuite les couches sont pressées ensemble et la peinture de la
source est transférée vers la destination là où le masque le permet. Dans une certaine mesure, les
cinq verbes suivants de dessin, ou les opérations, sont tous similaires. Ils diffèrent par la façon de
construire le masque.

Tracé (stroke)

L'opération stroke() utilise un stylo virtuel le long du chemin (path). Elle permet le transfert de la
source à travers le masque (mask) sur une ligne mince (ou épaisse) autour du chemin (path), en
fonction de la largeur du stylo (line width), du style de ligne (dash style), et des extrémités de ligne
(line caps).

Tutoriel Cairo : Diagrams (section #stroke)

cr.set_line_width(0.1)
cr.set_source_rgb(0, 0, 0)
cr.rectangle(0.25, 0.25, 0.5, 0.5)
cr.stroke()

Remplir (fill)

L'opération de remplissage ou fill() utilise plutôt le chemin (path), comme les lignes dans un livre de
coloriage, et donne accès à la source, par l'intermédiaire du masque (mask) dont l'orifice est
constitué par le chemin. Pour les chemins complexes (chemins avec de multiples sous-chemins
fermés -comme un beignet- ou des chemins qui s'auto-intersectent) c'est influencé par la règle de
remplissage. Notez que dans le cas du trait le transfert de la source le long du chemin se fait sur la
moitié de l'épaisseur du trait de chaque côté de la trajectoire, tandis que le remplissage s'opère
jusqu'aux bords définis par le chemin et pas au-delà.

Tutoriel Cairo : Diagrams (section #fill)

cr.set_source_rgb(0, 0, 0)

http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-stroke
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-set-line-width
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-set-dash
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-set-line-cap
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:stroke.png
http://www.tortall.net/mu/wiki/CairoTutorial/diagram.py?raw
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-fill
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-set-fill-rule
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-set-fill-rule
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:fill.png
http://www.tortall.net/mu/wiki/CairoTutorial/diagram.py?raw

Last update: 2012/02/27 17:23 floss:python:cairo-tutoriel https://dvillers.umons.ac.be/wiki/floss:python:cairo-tutoriel?rev=1330359808

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 06:27

cr.rectangle(0.25, 0.25, 0.5, 0.5)
cr.fill()

Afficher du texte / glyphes (Show Text / Glyphs)

L'opération //show_text()// forme le masque à partir d'un texte. On peut s'imaginer plus facilement
show_text() comme un raccourci sur la création d'un chemin avec text_path() suivi du remplissage
//fill()// pour son transfert. Soyez conscients que show_text() enregistre temporairement les glyphes,
ce qui est d'autant plus efficace si vous travaillez avec beaucoup de texte.

Tutoriel Cairo : Diagrams (section #text)

cr.set_source_rgb(0.0, 0.0, 0.0)
cr.select_font_face("Georgia", cairo.FONT_SLANT_NORMAL,
cairo.FONT_WEIGHT_BOLD)
cr.set_font_size(1.2)
x_bearing, y_bearing, width, height = cr.text_extents("a")[: 4]
cr.move_to(0.5 - width / 2 - x_bearing, 0.5 - height / 2 - y_bearing)
cr.show_text("a")

Peindre (paint)

L'opération peindre //paint()// utilise un masque qui transfère l'ensemble de la source vers la
destination. Certaines personnes considèrent cela comme un masque infiniment grand, et d'autres
considèrent cela comme une absence de masque; le résultat est le même. L'opération liée à
paint_with_alpha() permet semblablement le transfert de la totalité de la source sur la destination,
mais il ne transfère que le pourcentage spécifié de la couleur.

Tutoriel Cairo : Diagrams (section #paint)

cr.set_source_rgb(0.0, 0.0, 0.0)
cr.paint_with_alpha(0.5)

Masque (mask)

Les opérations mask() et mask_surface() permettent le transfert selon la transparence/opacité d'un
motif ou de la surface d'une seconde source. Lorsque le motif ou la surface est opaque, la source
courante est transférée à la destination. Lorsque le motif ou la surface est transparente, rien n'est
transféré.

Tutoriel Cairo : Diagrams (Section #mask)

self.linear = cairo.LinearGradient(0, 0, 1, 1)
self.linear.add_color_stop_rgb(0, 0, 0.3, 0.8)
self.linear.add_color_stop_rgb(1, 0, 0.8, 0.3)

self.radial = cairo.RadialGradient(0.5, 0.5, 0.25, 0.5, 0.5, 0.75)

http://www.cairographics.org/manual/cairo-text.html#cairo-show-text
http://www.cairographics.org/manual/cairo-Paths.html#cairo-text-path
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-fill
http://fr.wikipedia.org/wiki/Glyphes
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:showtext.png
http://www.tortall.net/mu/wiki/CairoTutorial/diagram.py?raw
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-paint
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-paint-with-alpha
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:paint.png
http://www.tortall.net/mu/wiki/CairoTutorial/diagram.py?raw
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-mask
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-mask-surface
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:mask.png
http://www.tortall.net/mu/wiki/CairoTutorial/diagram.py?raw

2026/02/01 06:27 5/12 Tutoriel sur Cairo pour les programmeurs Python

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

self.radial.add_color_stop_rgba(0, 0, 0, 0, 1)
self.radial.add_color_stop_rgba(0.5, 0, 0, 0, 0)

cr.set_source(self.linear)
cr.mask(self.radial)

Dessiner avec Cairo

Afin de créer une image que vous désirez, vous devez préparer le context pour chacun des verbes de
dessin. Pour utiliser stroke() ou fill() vous avez d'abord besoin d'un chemin. Pour utiliser show_text(),
vous devez positionner votre texte par son point d'insertion. Pour utiliser mask() vous avez besoin
d'une deuxième source, pattern ou surface. Et pour utiliser n'importe laquelle de ces opérations, y
compris paint(), vous avez besoin d'une source primaire.

Préparation et Sélection d'une source

Il y a trois principaux types de sources dans Cairo: les couleurs, les gradients ou dégradés et les
images. Les couleurs sont les plus simples, elles utilisent une teinte et une opacité uniformes pour la
source entière. Vous pouvez les sélectionner sans aucune préparation avec set_source_rgb() et
set_source_rgba(). L'utilisation de set_source_rgb(r, g, b) est équivalente à l'usage de
set_source_rgba(r, g, b, 1.0), et elle définit la couleur de votre source en utilisant une
opacité complète.

 Tutoriel Cairo: Drawing (section #rgba)

cr.set_source_rgb(0, 0, 0)
cr.move_to(0, 0)
cr.line_to(1, 1)
cr.move_to(1, 0)
cr.line_to(0, 1)
cr.set_line_width(0.2)
cr.stroke()

cr.rectangle(0, 0, 0.5, 0.5)
cr.set_source_rgba(1, 0, 0, 0.80)
cr.fill()

cr.rectangle(0, 0.5, 0.5, 0.5)
cr.set_source_rgba(0, 1, 0, 0.60)
cr.fill()
cr.rectangle(0.5, 0, 0.5, 0.5)
cr.set_source_rgba(0, 0, 1, 0.40)

http://www.cairographics.org/manual/cairo-cairo-t.html
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-stroke
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-fill
http://www.cairographics.org/manual/cairo-text.html#cairo-show-text
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-mask
http://www.cairographics.org/manual/cairo-cairo-pattern-t.html
http://www.cairographics.org/manual/cairo-cairo-surface-t.html
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-paint
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-set-source-rgb
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-set-source-rgba
http://www.tortall.net/mu/wiki/CairoTutorial/draw.py?raw
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:setsourcergba.png

Last update: 2012/02/27 17:23 floss:python:cairo-tutoriel https://dvillers.umons.ac.be/wiki/floss:python:cairo-tutoriel?rev=1330359808

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 06:27

cr.fill()

Des gradients décrivent une couleur variant progressivement en définissant un emplacement de
début et un emplacement d'arrêt ainsi qu'une série de butées le long du chemin. Les gradients
linéaires Linear gradients sont construits à partir de deux points qui définissent une direction sur
laquelle on place les emplacements de début et d'arrêt. Des gradients radiaux (radial gradients) sont
également construits à partir de deux points auxquels sont associés des rayons correspondant au
cercle sur lequel on définit les emplacements de début et d'arrêt. Les butées (stops) sont ajoutés au
dégradé avec add_color_stop_rgb() et add_color_stop_rgba() qui prennent une couleur comme
set_source_rgb*(), ainsi qu'un décalage (offset) pour indiquer où il se trouve entre les
emplacements de référence. Les couleurs entre les arrêts adjacents sont moyennées sur l'espace
pour former un mélange fluide. Enfin, le comportement au-delà des emplacements de référence peut
être contrôlé par set_extend().

 Tutoriel Cairo: Drawing (section #gradient)

radiale = cairo.RadialGradient(0.25, 0.25, 0.1, 0.5, 0.5, 0.5)
radial.add_color_stop_rgb(0, 1.0, 0.8, 0.8)
radial.add_color_stop_rgb(1, 0.9, 0.0, 0.0)

for i in range(1, 10):
 for j in range(1, 10):
 cr.rectangle(i/10.0 - 0.04, j/10.0 - 0.04, 0.08, 0.08)
cr.set_source(radial)
cr.fill ()

linear = cairo.LinearGradient(0.25, 0.35, 0.75, 0.65)
linear.add_color_stop_rgba(0.00, 1, 1, 1, 0)
linear.add_color_stop_rgba(0.25, 0, 1, 0, 0.5)
linear.add_color_stop_rgba(0.50, 1, 1, 1, 0)
linear.add_color_stop_rgba(0.75, 0, 0, 1, 0.5)
linear.add_color_stop_rgba(1.00, 1, 1, 1, 0)

cr.rectangle(0.0, 0.0, 1, 1)
cr.set_source(linear)
cr.fill()

des images incluent deux surfaces chargées à partir des fichiers existants avec
cairo.ImageSurface.create_from_png() et des surfaces créées à partir de Cairo comme destination
préalable. Comme à partir de Cairo 1.2, la meilleure façon de faire et d'utiliser une destination
préalable comme source se fait avec push_group() et soit avec pop_group() ou
pop_group_to_source(). Utilisez pop_group_to_source() jusqu'à ce que vous sélectionnez une
nouvelle source, et pop_group() lorsque vous voulez la sauvegarder de manière à pouvoir la
sélectionner autant que désiré avec set_source().

http://www.cairographics.org/manual/cairo-cairo-pattern-t.html#cairo-pattern-create-linear
http://www.cairographics.org/manual/cairo-cairo-pattern-t.html#cairo-pattern-create-radial
http://www.cairographics.org/manual/cairo-cairo-pattern-t.html#cairo-pattern-add-color-stop-rgb
http://www.cairographics.org/manual/cairo-cairo-pattern-t.html#cairo-pattern-add-color-stop-rgba
http://www.cairographics.org/manual/cairo-cairo-pattern-t.html#cairo-pattern-set-extend
http://www.tortall.net/mu/wiki/CairoTutorial/draw.py?raw
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:setsourcegradient.png
http://www.cairographics.org/manual/cairo-PNG-Support.html#cairo-image-surface-create-from-png
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-push-group
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-pop-group
http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-pop-group-to-source

2026/02/01 06:27 7/12 Tutoriel sur Cairo pour les programmeurs Python

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Création d'un chemin

Cairo a toujours un chemin actif. Si vous appelez stroke() il dessinera le chemin avec vos paramètres
de ligne. Si vous appelez fill(), il remplira l'intérieur du chemin. Mais comme le chemin est souvent
vide, les deux appels ne se traduiront par aucun changement de votre destination. Pourquoi est-il si
souvent vide ? D'une part, on commence dans cette configuration, mais plus important encore, après
chaque stroke() ou fill(), le chemin est de nouveau vidé pour vous permettre de commencer à
construire votre chemin suivant.

Que faire si vous voulez dessiner plusieurs choses avec le même chemin ? Par exemple, pour dessiner
un rectangle rouge avec une bordure noire, vous voudriez remplir le chemin rectangulaire avec une
source rouge, puis tracer le même chemin avec une source noire. Un chemin rectangulaire est facile à
créer plusieurs fois, mais de nombreux chemins sont plus complexes.

Cairo supporte facilement la réutilisation des chemins en proposant des secondes variantes de ses
opérations. Les deux dessineront la même chose, mais la seconde ne réinitialise pas le chemin. Pour
tracer un trait, à côté de stroke il y a stroke_preserve(); pour le remplissage,
fill_preserve() est l'alternative à fill(). Même la définition d'une région (clip) dispose d'une
variante avec préservation.

A côté du choix de la sauvegarde du chemin, il y a seulement quelques opérations courantes :

Mouvement

Cairo utilise un système de connecteurs entre points (connect-the-dots) lors de la
création des chemins. Commencez au point 1, tracez une ligne vers 2, puis vers 3,
et ainsi de suite. Lorsque vous démarrez un chemin, ou quand vous avez besoin de
démarrer un nouveau sous-chemin, vous voulez qu'il le démarrer du point 1 sans
que quelque chose y soit connecté. Pour cela, utilisez move_to(). Ceci définit le
point de référence en cours sans créer un chemin de raccord à partir d'un point
précédent. Il y a aussi une variante en coordonnées relatives, rel_move_to(), qui
établit la nouvelle référence à une position spécifiée par une translation par rapport à la référence
actuelle. Après avoir établi votre premier point de référence, utilisez les autres opérations de tracé de
chemin pour mettre à la fois à jour le point de référence et s'y connecter d'une certaine manière.

Tutoriel Cairo: Drawing (section #moveto)

cr.move_to(0.25, 0.25)

Lignes droites

Que ce soit avec des coordonnées absolues line_to() (étendre le chemin de la
référence à ce point), ou avec des coordonnées relatives rel_line_to() (étendre le
chemin de la référence dans une direction donnée), le chemin de connexion sera
une ligne droite. Le nouveau point de référence sera à l'autre extrémité de la ligne.

http://cairographics.org/manual/cairo-cairo-t.html#cairo-clip
http://www.cairographics.org/manual/cairo-Paths.html#cairo-move-to
http://www.cairographics.org/manual/cairo-Paths.html#cairo-rel-move-to
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:path-moveto.png
http://www.tortall.net/mu/wiki/CairoTutorial/draw.py?raw
http://www.cairographics.org/manual/cairo-Paths.html#cairo-line-to
http://www.cairographics.org/manual/cairo-Paths.html#cairo-rel-line-to
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:path-lineto.png

Last update: 2012/02/27 17:23 floss:python:cairo-tutoriel https://dvillers.umons.ac.be/wiki/floss:python:cairo-tutoriel?rev=1330359808

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 06:27

Tutoriel Cairo: Drawing (section #lineto)

cr.line_to (0.5, 0.375)
cr.rel_line_to (0.25, -0.125)

Arcs

Les arcs sont des parties de l'extérieur d'un cercle. Contrairement aux lignes
droites, le point que vous spécifiez n'est pas directement sur ​​le chemin. C'est en fait
le centre du cercle qui servira à définir l'arc, en spécifiant aussi le rayon, l'angle de
départ et celui d'arrivée. Ces points sont reliés soit dans le sens horaire par arc() ou
anti-horaire par arc_negative(). Si le point de référence précédent n'est pas sur la
nouvelle courbe, une ligne droite est ajoutée à partir de lui jusqu'à l'endroit où l'arc
commence. Le point de référence est ensuite mis à jour à l'endroit où l'arc se
termine. Il n'y a que les versions absolues de ces deux opérations.

Tutoriel Cairo: Drawing (section #arc)

cr.arc (0.5, 0.5, 0.25 * sqrt(2), -0.25 * pi, 0.25 * pi)

Courbes

Les courbes dans Cairo sont des courbes cubiques de Bézier. Elles commencent au
point de référence en cours et sont tangentes en leurs extrémités à deux directions
pointant vers deux autres points (sans passer par eux) pour se joindre à un
troisième point (le point terminal) spécifié. Comme les lignes, il y a à la fois la
version absolue curve_to() et la version relative rel_curve_to(). Notez que la
variante relative précise l'ensemble des trois points par rapport au point de
référence précédent, plutôt que de positionner chacun par rapport au point de
contrôle précédent de la courbe.

Tutoriel Cairo: Drawing (section #curveto)

cr.rel_curve_to(-0.25, -0.125, -0.25, 0.125, -0.5, 0)

Fermer le chemin

Cairo peut aussi fermer le chemin en traçant une ligne droite vers le début de
l'actuel sous-chemin. Cette droite peut être utile pour la dernière arête d'un
polygone, mais n'est pas directement utile pour des formes à base de courbes. Un
chemin fermé est fondamentalement différent d'un chemin ouvert : c'est un chemin
continu et il n'a pas de début ou de fin. Un chemin fermé n'a pas style de bout de
ligne (caps) et il n'y a pas de possibilité d'en mettre (commande set_line_cap).

Tutoriel Cairo: Drawing (section #closepath)

cr.close_path()

http://www.tortall.net/mu/wiki/CairoTutorial/draw.py?raw
http://www.cairographics.org/manual/cairo-Paths.html#cairo-arc
http://www.cairographics.org/manual/cairo-Paths.html#cairo-arc-negative
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:path-arcto.png
http://www.tortall.net/mu/wiki/CairoTutorial/draw.py?raw
http://www.cairographics.org/manual/cairo-Paths.html#cairo-curve-to
http://www.cairographics.org/manual/cairo-Paths.html#cairo-rel-curve-to
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:path-curveto.png
http://www.tortall.net/mu/wiki/CairoTutorial/draw.py?raw
http://cairographics.org/manual/cairo-cairo-t.html#cairo-set-line-cap
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:path-close.png
http://www.tortall.net/mu/wiki/CairoTutorial/draw.py?raw

2026/02/01 06:27 9/12 Tutoriel sur Cairo pour les programmeurs Python

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Texte

Finalement, le texte peut être transformé en un chemin avec text_path(). Les chemins créés à partir
de texte sont comme n'importe quel autre chemin, et supportent les opérations de tracé ou de
remplissage. Ce chemin est placé ancrée au point de référence actuelle, nécessitant un move_to()
vers l'emplacement de votre choix avant de transformer un texte en chemin. Cependant, il y a des
problèmes de performance en utilisant cette fonction si vous travaillez avec beaucoup de texte;
lorsque c'est possible, il est préférable d'utiliser l'opération show_text() au dessus de text_path() et
fill().

Interprétation du texte

Pour utiliser du texte de manière efficace, vous avez besoin de savoir où il ira. Les
méthodes font_extents() et text_extents() vont obtenir cette information. Si ce
schéma est difficile à distinguer car trop petit, je vous conseille de prendre le code
source et d'augmenter la taille jusqu'à 600. Il montre la relation entre le point de
référence (point rouge); le point de référence suivant suggéré (point bleu); la boîte
englobante (lignes en pointillés bleus), le déplacement de palier (ligne bleue) et les
lignes de hauteur, d'ascension, de base, et de descente (en pointillés vert).

Le point de référence est toujours sur la ligne de base. La ligne de descente est en dessous, et reflète
une boîte englobante approximative pour tous les caractères de la police. Toutefois, c'est un choix
artistique destiné à indiquer l'alignement plutôt qu'une vraie boîte englobante. La même chose est
vraie pour la ligne de montée au-dessus. Au dessus, on trouve la ligne de hauteur, l'espacement
esthétiquement recommandé entre les lignes de base consécutives. Ce trois distances sont données
comme des distances à la ligne de base, et devraient être positives en dépit de leurs directions
différentes.

Le palier est le déplacement du point de référence dans le coin supérieur gauche de la boîte
englobante. Il est souvent nul ou est une petite valeur positive pour le déplacement suivant x, mais il
peut être négatif pour des lettre comme le j montré. C'est presque toujours une valeur négative pour
le déplacement suivant y. La largeur et la hauteur décrivent alors la taille de la boîte englobante.
L'avance vous positionne au point de référence proposé pour la lettre suivante. Notez que les
rectangles englobant des blocs de texte consécutifs peuvent se chevaucher si le palier est négatif, ou
que l'avance est plus petite que ce que la largeur suggère.

En plus du placement, vous devez également spécifier une police, son style et sa taille. On définit la
police et le style avec select_font_face(), et la taille avec set_font_size(). Si vous avez besoin d'un
contrôle encore plus fin, essayez d'utiliser cairo.FontOptions() avec get_font_options(), en les réglant
avec set_font_options().

Lorsque vous travaillez dans GTK +, il y a aussi pangocairo.CairoContext. Michael Urman propose
d'utiliser les fonctionnalités de caractères intégrées à Cairo, plus adaptée pour la manipulation de
texte avec des restrictions de taille et des positionnements pointilleux complexes. Sinon,
pangocairo.CairoContext peut-être plus adapté lorsque vous essayez de créer un widget texte qui
ressemble à d'autre widget textes GTK+, ou qui a des contraintes complexes sur la police ou la
disposition.

http://www.cairographics.org/manual/cairo-Paths.html#cairo-text-path
http://www.cairographics.org/manual/cairo-text.html#cairo-font-extents
http://www.cairographics.org/manual/cairo-text.html#cairo-text-extents
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:textextents.png
http://www.cairographics.org/manual/cairo-text.html#cairo-select-font-face
http://www.cairographics.org/manual/cairo-text.html#cairo-set-font-size
http://www.cairographics.org/manual/cairo-cairo-font-options-t.html#cairo-font-options-t
http://www.cairographics.org/manual/cairo-text.html#cairo-get-font-options
http://www.cairographics.org/manual/cairo-text.html#cairo-set-font-options
http://www.pygtk.org/pygtk2reference/class-pangocairocairocontext.html

Last update: 2012/02/27 17:23 floss:python:cairo-tutoriel https://dvillers.umons.ac.be/wiki/floss:python:cairo-tutoriel?rev=1330359808

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 06:27

Travailler avec des transformations

Les transformations ont trois utilisations principales. D'abord, elles vous permettent de mettre en
place un système de coordonnées sur lequel il est facile de penser et de travailler, et d'avoir une
sortie de taille quelconque. Deuxièmement, elles vous permettent de créer des fonctions auxiliaires
qui travaillent dans ou autour d'un point zéro (0, 0), mais qui pourront être appliquée n'importe où
dans l'image de sortie. Troisièmement, elles vous permettent de déformer l'image, de modifier un arc
de cercle en un arc elliptique, … Les transformations sont une façon de mettre en place une relation
entre deux systèmes de coordonnées. Le système de coordonnées de l'espace du périphérique est
attaché à la surface, et ne peut pas changer. Le système de coordonnées de l'espace utilisateur
correspond à cet espace par défaut, mais peut être changé pour les raisons invoquées ci-dessus. Les
fonctions auxiliaires user_to_device() et user_to_device_distance() indiquent ce que sont les
coordonnées du périphérique pour une position ou distance en coordonnées de l'utilisateur. De la
même manière device_to_user() et device_to_user_distance() vous donnent les coordonnées
utilisateurs pour des positions ou distances en coordonnées périphériques. N'oubliez pas de fournir
des positions à une variante non-distance des fonctions, et des déplacements relatifs par rapport ou
d'autres distances aux variantes utilisant les distances.

la construction des diagrammes du présent document s'appuient sur l​'ensemble de ces principes.
Qu'on dessine en 120 x 120 ou 600 x 600 pixels, on utilise scale() pour considérer un espace de
travail unitaire 1.0 x 1.0. Pour placer les résultats le long de la colonne de droite, comme dans la
discussion du modèle de dessin de Cairo, on utilise translate(). Pour ajouter la vue en perspective des
couches qui se chevauchent, j'ai (Michael Urman) mis en place une déformation arbitraire avec
transform() sur une cairo.Matrix().

Pour comprendre vos transformations, il faut les lire de bas en haut, en les appliquant au point que
vous dessinez. Pour comprendre quelle transformation créer, il faut penser au processus dans le sens
inverse. Par exemple, si je veux que mon espace de travail 1.0 x 1.0 corresponde à 100 x 100 pixels
au milieu d'une surface de 120 x 120 pixels, je peux mettre en place une des trois méthodes
suivantes:

cr.translate (10, 10); cr.scale (100, 100)1.
cr.scale (100, 100); cr.translate (0,1, 0,1)2.
cr.transform (cairo.Matrix (100, 0, 0, 100, 10, 10))3.

Utilisez la première méthode lorsque c'est pertinent, car c'est souvent la plus lisible. Utilisez la
troisième pour un contrôle supplémentaire indisponible avec les fonctions primaires translate et scale.

Soyez prudent lorsque vous essayez de dessiner des lignes lorsque vous êtes en mode de
transformation. Même si vous réglez votre largeur de la ligne alors que le facteur d'échelle est de 1, le
paramètre de largeur de ligne est toujours en coordonnées de l'utilisateur et n'est pas modifié en
réglant le facteur d'échelle. Tant que vous opérez avec un facteur d'échelle, la largeur de votre ligne
est multiplié par cette échelle. Pour spécifier une largeur d'une ligne en pixels, utilisez la fonction
device_to_user_distance() pour transformer une distance (1, 1) de l'espace du périphérique en, par
exemple, une distance (0,01, 0,01) de l'espace utilisateur. Notez que si votre transformation déforme
l'image, il n'y a pas nécessairement moyen de produire une ligne avec une largeur uniforme.

http://www.cairographics.org/manual/cairo-Transformations.html#cairo-user-to-device
http://www.cairographics.org/manual/cairo-Transformations.html#cairo-user-to-device-distance
http://www.cairographics.org/manual/cairo-Transformations.html#cairo-device-to-user
http://www.cairographics.org/manual/cairo-Transformations.html#cairo-device-to-user-distance
http://www.cairographics.org/manual/cairo-Transformations.html#cairo-scale
http://www.cairographics.org/manual/cairo-Transformations.html#cairo-translate
http://www.cairographics.org/manual/cairo-Transformations.html#cairo-transform
http://www.cairographics.org/manual/cairo-cairo-matrix-t.html#cairo-matrix-t
http://www.cairographics.org/manual/cairo-Transformations.html#cairo-device-to-user-distance

2026/02/01 06:27 11/12 Tutoriel sur Cairo pour les programmeurs Python

Didier Villers, UMONS - wiki - https://dvillers.umons.ac.be/wiki/

Que faire ensuite

Ceci clôture le tutoriel. Il ne couvre pas toutes les fonctions de Cairo, donc pour certaines
fonctionnalités avancées mais moins répandues, vous aurez besoin de regarder ailleurs. Le code
derrière les exemples utilise quelques techniques qui ne sont pas décrites, donc leur analyse peut
être une bonne première étape. D'autres exemples sur cairographics.org vont dans différentes
directions. Comme pour tout, il y a un grand écart entre la connaissance des règles de l'outil, et la
capacité à bien l'utiliser. La dernière section de ce document donne quelques idées pour vous aider à
franchir le cap.

Trucs et astuces

Dans les sections précédentes, vous devriez avoir construit une solide connaissance des opérations
que Cairo utilise pour créer des images. Dans cette section, j'ai (NDT : pour rappel, Michael Urman)
rassemblé une petite poignée d'extraits que j'ai trouvé particulièrement utiles ou non évidents. Il peut
y avoir d'autres façons pour mieux faire ces choses.

Largeur de ligne

Lorsque vous travaillez sous une transformation d'échelle uniforme, vous ne pouvez pas juste utiliser
des pixels pour la largeur de votre ligne. Toutefois, il est facile d'effectuer la transposition par le
raccourci suivant:

cr.set_line_width (max (cr.device_to_user_distance (pixel_width,
pixel_width)))

Lorsque vous travaillez avec une échelle déformée, vous voudriez toujours avoir des largeurs de ligne
qui sont uniformes dans l'espace périphérique. Pour cela, vous devez revenir à une échelle uniforme
avant le tracé du chemin. Dans l'image, l'arc sur de gauche est tracé sous une déformation, tandis
que l'arc de droite est tracé avec une échelle uniforme.

 Caire Tutoriel: Tips and Tricks (article #deform)

cr.save()
cr.scale(0.5, 1)
cr.arc(0.5, 0.5, 0.40, 0, 2 * pi)
cr.stroke()

cr.translate(1, 0)
cr.arc(0.5, 0.5, 0.40, 0, 2 * pi)
cr.restore()
cr.stroke()

Alignement du texte

http://cairographics.org/examples/
http://www.tortall.net/mu/wiki/CairoTutorial/tips.py?raw
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:tips-ellipse.png

Last update: 2012/02/27 17:23 floss:python:cairo-tutoriel https://dvillers.umons.ac.be/wiki/floss:python:cairo-tutoriel?rev=1330359808

https://dvillers.umons.ac.be/wiki/ Printed on 2026/02/01 06:27

Lorsque vous essayez de centrer le texte lettre par lettre à différents endroits, vous devez décider
comment vous voulez effectuer ce centrage. Par exemple le code suivant en fait des lettres centrées
individuellement, conduisant à des résultats médiocres lorsque vos lettres sont de tailles différentes.
(Contrairement à la plupart des exemples, ici, on suppose un espace de travail 26 x 1.)

Cairo Tutoriel: Tips and Tricks (section #center)

for cx, letter in enumerate('abcdefghijklmnopqrstuvwxyz'):
 xbearing, ybearing, width, height, xadvance, yadvance =
(cr.text_extents(letter))
 cr.move_to(cx + 0.5 - xbearing - width / 2, 0.5 - ybearing - height
/ 2)
 cr.show_text(letter)

Le centrage vertical doit plutôt être basé sur la taille générale de la police, gardant ainsi votre ligne
de base stable. Notez que le positionnement exact dépend maintenant des métriques prévues par la
police elle-même, de sorte que les résultats ne sont pas nécessairement les mêmes entre polices
différentes.

Cairo Tutoriel: Tips and Tricks (section #baseline)

fascent, fdescent, fheight, fxadvance, fyadvance = cr.font_extents()
for cx, letter in enumerate('abcdefghijklmnopqrstuvwxyz'):
 xbearing, ybearing, width, height, xadvance, yadvance =
(cr.text_extents(letter))
 cr.move_to(cx + 0.5 - xbearing - width / 2, 0.5 - fdescent + fheight /
2)
 cr.show_text (lettre)

Références complémentaires, hors traduction

http://zetcode.com/tutorials/cairographicstutorial/
http://preshing.com/20110831/penrose-tiling-explained

From:
https://dvillers.umons.ac.be/wiki/ - Didier Villers, UMONS - wiki

Permanent link:
https://dvillers.umons.ac.be/wiki/floss:python:cairo-tutoriel?rev=1330359808

Last update: 2012/02/27 17:23

https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:tips-letter.png
http://www.tortall.net/mu/wiki/CairoTutorial/tips.py?raw
https://dvillers.umons.ac.be/wiki/_media/floss:python:cairo:tips-font.png
http://www.tortall.net/mu/wiki/CairoTutorial/tips.py?raw
http://zetcode.com/tutorials/cairographicstutorial/
http://preshing.com/20110831/penrose-tiling-explained
https://dvillers.umons.ac.be/wiki/
https://dvillers.umons.ac.be/wiki/floss:python:cairo-tutoriel?rev=1330359808

	Tutoriel sur Cairo pour les programmeurs Python
	Principe de dessin de Cairo
	Noms
	Destination
	Source
	Masque (mask)
	Chemin (path)
	Contexte (context)

	Verbes
	Tracé (stroke)
	Remplir (fill)
	Afficher du texte / glyphes (Show Text / Glyphs)
	Peindre (paint)
	Masque (mask)

	Dessiner avec Cairo
	Préparation et Sélection d'une source
	Création d'un chemin
	Mouvement
	Lignes droites
	Arcs
	Courbes
	Fermer le chemin
	Texte

	Interprétation du texte
	Travailler avec des transformations
	Que faire ensuite
	Trucs et astuces
	Largeur de ligne
	Alignement du texte

	Références complémentaires, hors traduction

