====== Simulations numériques de marches aléatoires : programmes en Python ======
Pour une bonne compréhension, ces programmes doivent être étudiés successivement. Il est important d'exécuter le code Python et même de tester des petites modifications.
===== Génération de nombres aléatoires =====
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
cf. documentation cf http://docs.python.org/library/random.html
random number generation - génération de nombres aléatoires
functions of interest : choice, randint, seed
"""
from random import *
facepiece = ['pile','face']
valeurpiece = [0.01,0.02,0.05,0.1,0.2,0.5,1.,2.]
for i in range(1):
# choice : random choice of an element from a list
print(choice(facepiece), choice(valeurpiece))
# randint : return a random integer number between 2 values (including limits)
print(randint(0,10)) # imprime un nombre aléatoire entre 0 et 10
print(choice(range(0,11,1))) # same function, using choice and range to create the list
# seed(ANY_DATA) : seeding of the random number generator with any (constant) data
# in order to generate reproducible random sequences.
# seed() - without data - uses internal clock value to "randomly" initiate the generator !
for j in range(3):
#seed('ma chaîne personnielle') # reproducible initialization
seed() # to randomly initiate the generator
for i in range(10):
print(randint(1000,9999))
print(" ")
===== Histogrammes de nombres aléatoires =====
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from random import * # cf. documentation cf http://docs.python.org/library/random.html
import numpy as np
import matplotlib.pyplot as plt # http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot
import matplotlib.mlab as mlab # http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab
#seed('ma chaîne personnelle') # reproducible initialization
seed()
rval = []
for j in range(100000):
rval.append(randint(0,99)) # append to the list a random (integer) number between 0 and 99
# print rval # uncomment just to see the list of random numbers
# analysis - histogram - see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
# http://fr.wikipedia.org/wiki/Histogramme
xh = np.array(rval) # see http://www.scipy.org/Cookbook/BuildingArrays transforme une liste en un tableau numérique de Numpy
# print(xh)
fig = plt.figure()
ax = fig.add_subplot(111)
n, bins, patches = ax.hist(xh, 50, facecolor='green', alpha=0.75)
print(n) # les nombres d'occurences par classe
print(bins) # les classes, de largeur identique
# modifier le nombre de nombres générés, les nombres de classes-bins,
plt.show()
===== Représenter le déplacement d'un objet =====
#!/usr/bin/python
# -*- coding: utf-8 -*-
from tkinter import *
import time
window = Tk()
sizex = 400
sizey = 200
canvas = Canvas(window, width = sizex, height = sizey)
canvas.pack()
x = 100 # initial left-most edge of first ball
y = 30 # initial top-most edge of first ball
r = 20 # ball diameter
depx = 2 # displacement at each move in x direction
depy = 1 # displacement at each move in y direction
ball=canvas.create_oval(x,y,x+r,y+r,fill="blue")
#moves
no_moves = 140
for j in range(no_moves):
canvas.move(ball, depx, depy)
canvas.after(20) # time delay in milliseconds
canvas.update()
time.sleep(5) # on attend quelques secondes
window.destroy()
===== Représenter le déplacement de nombreux points =====
#!/usr/bin/python
# -*- coding: utf-8 -*-
from tkinter import *
import time
from random import *
window = Tk()
sizex = 400
sizey = 600
canvas = Canvas(window, width = sizex, height = sizey)
canvas.pack()
x = 100 # initial left-most edge of first ball
y = 30 # initial top-most edge of first ball
r = 16 # ball diameter
depx = 2 # displacement at each move in x direction
depy = 0 # displacement at each move in y direction
# create balls:
no_particles = 20
dy = (sizey-2.*y)/(no_particles+1) # y initial separation between balls
print(dy)
ball_list = []
for i in range(no_particles):
ball = canvas.create_oval(x,y,x+r,y+r,fill="blue")
y = y+dy
ball_list.append(ball)
#moves
no_moves = 100
for j in range(no_moves):
for ball in ball_list:
canvas.move(ball, depx, choice([-2, 2]) )
# canvas.move(ball, depx, depy)
canvas.after(10)
canvas.update()
time.sleep(5) # on attend quelques secondes
window.destroy()
===== Marche aléatoire d'un petit nombre de pas =====
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from tkinter import *
from random import choice # http://docs.python.org/library/random.html
import numpy as np
import matplotlib.pyplot as plt # http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot
import matplotlib.mlab as mlab # http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab
window = Tk()
sizex = 200
sizey = 600
canvas = Canvas(window, width = sizex, height = sizey)
canvas.pack()
x = 100 # initial left-most edge of first ball
y = 1 # initial top-most edge of first ball
r = 4 # ball diameter
depx = 10 # displacement at each move in x direction
depy = 0
# create balls:
no_particles = 6400
dy = (sizey-2.*y)/(no_particles+1) # y initial separation between balls
print(dy)
ball_list = []
for i in range(no_particles):
ball = canvas.create_oval(x,y,x+r,y+r,fill="red")
y = y+dy
ball_list.append(ball)
#moves
no_moves = 6 # number of moves
for j in range(no_moves):
for ball in ball_list:
canvas.move(ball, choice([-1,1])*depx, depy)
canvas.after(1)
canvas.update()
#analysis - histogram
# see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
xpos=[]
for ball in ball_list:
posi = canvas.coords(ball)
xpos.append(((no_moves+1.)/no_moves)*(posi[0]-x)/depx)
# le facteur (no_moves+1.)/no_moves) permet de gérer la largeur des barres de l'histogramme
xh = np.array(xpos) # see http://www.scipy.org/Cookbook/BuildingArrays
#print(xh)
fig = plt.figure()
ax = fig.add_subplot(111)
n, bins, patches = ax.hist(xh, (no_moves)+1, facecolor='green', alpha=0.75)
print(n,bins, patches)
plt.show()
#window.mainloop()
===== Marche aléatoire d'un grand nombre de pas =====
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from tkinter import *
from random import choice # http://docs.python.org/library/random.html
import numpy as np
import matplotlib.pyplot as plt # http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot
import matplotlib.mlab as mlab # http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab
window = Tk()
sizex = 400
sizey = 400
canvas = Canvas(window, width = sizex, height = sizey)
canvas.pack()
x = 200 # initial left-most edge of first ball
y = 1 # initial top-most edge of first ball
r = 4 # ball diameter
depx = 1 # displacement at each move in x direction
depy = 0
# create balls:
no_particles = 1600
dy = (sizey-2.)/(no_particles+1) # y initial separation between balls
print(dy)
ball_list = []
for i in range(no_particles):
ball = canvas.create_oval(x,y,x+r,y+r,fill="blue")
y = y+dy
ball_list.append(ball)
#moves
no_moves = 200
for j in range(no_moves):
for ball in ball_list:
canvas.move(ball, choice([-1,1])*depx, depy)
canvas.after(1)
canvas.update()
#analysis - histogram
# see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
xpos = []
for ball in ball_list:
posi = canvas.coords(ball)
xpos.append((posi[0]-x)/depx)
xh = np.array(xpos) # see http://www.scipy.org/Cookbook/BuildingArrays
# compute the mean mu and sigma from xh (and/or theoretical value from random walk result)
mu = np.mean(xh)
sigma = np.std(xh)
fig = plt.figure()
ax = fig.add_subplot(111)
# print xh
n, bins, patches = ax.hist(xh, 10, facecolor='green', alpha=0.75)
print(n,bins, patches)
# hist uses np.histogram to create 'n' and 'bins'. cf. http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
ax.set_xlabel('X positions')
ax.set_ylabel('Occurences')
ax.grid(True)
plt.show()
#window.mainloop()
==== Avec analyse de la distribution : ====
# -*- coding: utf-8 -*-
from tkinter import *
from random import choice # http://docs.python.org/library/random.html
import numpy as np
import matplotlib.pyplot as plt # http://matplotlib.sourceforge.net/api/pyplot_api.html#module-matplotlib.pyplot
import matplotlib.mlab as mlab # http://matplotlib.sourceforge.net/api/mlab_api.html#module-matplotlib.mlab
window = Tk()
sizex = 400
sizey = 400
canvas = Canvas(window, width = sizex, height = sizey)
canvas.pack()
x = 200 # initial left-most edge of first ball
y = 1 # initial top-most edge of first ball
r = 4 # ball diameter
depx = 1 # displacement at each move in x direction
depy = 0
# create balls:
no_particles = 1000
dy = (sizey-2.)/(no_particles+1) # y initial separation between balls
#print dy
ball_list=[]
for i in range(no_particles):
ball = canvas.create_oval(x,y,x+r,y+r,fill="blue")
y = y+dy
ball_list.append(ball)
#moves
no_moves = 400
for j in range(no_moves):
for ball in ball_list:
canvas.move(ball, choice([-1,-1,-1,-1,1,1,1,1,1,1])*depx, depy) #drift
canvas.after(1)
canvas.update()
#analysis - histogram
# see http://matplotlib.sourceforge.net/examples/api/histogram_demo.html
xpos = []
for ball in ball_list:
posi = canvas.coords(ball)
xpos.append(posi[0]-x)
xh = np.array(xpos) # see http://www.scipy.org/Cookbook/BuildingArrays
# compute the mean mu and sigma from xh (and/or theoretical value from random walk result)
mu = np.mean(xh)
sigma = np.std(xh)
fig = plt.figure()
ax = fig.add_subplot(111)
# print xh
n, bins, patches = ax.hist(xh, 20, facecolor='green', alpha=0.75)
print(mu, sigma)
print(n,bins, patches)
# hist uses np.histogram to create 'n' and 'bins'.
# np.histogram returns the bin edges, so there will be ii probability
# density values in n, ii+1 bin edges in bins and ii patches. To get
# everything lined up, we'll compute the bin centers
bincenters = 0.5*(bins[1:]+bins[:-1])
# add a 'best fit' line for the normal PDF
yh = (bins[1]-bins[0])*no_particles*mlab.normpdf( bincenters, mu, sigma) # http://matplotlib.sourceforge.net/api/mlab_api.html#matplotlib.mlab.normpdf
l = ax.plot(bincenters, yh, 'r--', linewidth=1)
#print n
ax.set_xlabel('X positions')
ax.set_ylabel('Occurences')
ax.grid(True)
plt.show()
#window.mainloop()